Prediction across healthcare settings: a case study in predicting emergency department disposition

被引:25
作者
Barak-Corren, Yuval [1 ]
Chaudhari, Pradip [2 ,3 ]
Perniciaro, Jessica [2 ,3 ]
Waltzman, Mark [4 ,5 ]
Fine, Andrew M. [4 ,5 ]
Reis, Ben Y. [1 ,4 ]
机构
[1] Boston Childrens Hosp, Predict Med Grp, Computat Hlth Informat Program, Boston, MA 02115 USA
[2] Univ Southern Calif, Div Emergency & Transport Med, Childrens Hosp Los Angeles, Los Angeles, CA 90007 USA
[3] Univ Southern Calif, Keck Sch Med, Los Angeles, CA 90007 USA
[4] Harvard Med Sch, Boston, MA 02115 USA
[5] Boston Childrens Hosp, Emergency Med, Boston, MA USA
关键词
SEVERITY; PERFORMANCE; IMPACT; SCORE; RISK;
D O I
10.1038/s41746-021-00537-x
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Several approaches exist today for developing predictive models across multiple clinical sites, yet there is a lack of comparative data on their performance, especially within the context of EHR-based prediction models. We set out to provide a framework for prediction across healthcare settings. As a case study, we examined an ED disposition prediction model across three geographically and demographically diverse sites. We conducted a 1-year retrospective study, including all visits in which the outcome was either discharge-to-home or hospitalization. Four modeling approaches were compared: a ready-made model trained at one site and validated at other sites, a centralized uniform model incorporating data from all sites, multiple site-specific models, and a hybrid approach of a ready-made model re-calibrated using site-specific data. Predictions were performed using XGBoost. The study included 288,962 visits with an overall admission rate of 16.8% (7.9-26.9%). Some risk factors for admission were prominent across all sites (e.g., high-acuity triage emergency severity index score, high prior admissions rate), while others were prominent at only some sites (multiple lab tests ordered at the pediatric sites, early use of ECG at the adult site). The XGBoost model achieved its best performance using the uniform and site-specific approaches (AUC = 0.9-0.93), followed by the calibrated-model approach (AUC = 0.87-0.92), and the ready-made approach (AUC = 0.62-0.85). Our results show that site-specific customization is a key driver of predictive model performance.
引用
收藏
页数:7
相关论文
共 48 条
[21]   Adaptation of Clinical Prediction Models for Application in Local Settings [J].
Kappen, Teus H. ;
Vergouwe, Yvonne ;
van Klei, Wilton A. ;
van Wolfswinkel, Leo ;
Kalkman, Cor J. ;
Moons, Karel G. M. .
MEDICAL DECISION MAKING, 2012, 32 (03) :E1-E10
[22]   An Integrated Approach of Machine Learning and Systems Thinking for Waiting Time Prediction in an Emergency Department [J].
Kuo, Yong-Hong ;
Chan, Nicholas B. ;
Leung, Janny M. Y. ;
Meng, Helen ;
So, Anthony Man-Cho ;
Tsoi, Kelvin K. F. ;
Graham, Colin A. .
INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2020, 139
[23]   Identification of children at very low risk of clinically-important brain injuries after head trauma: a prospective cohort study [J].
Kuppermann, Nathan ;
Holmes, James F. ;
Dayan, Peter S. ;
Hoyle, John D., Jr. ;
Atabaki, Shireen M. ;
Holubkov, Richard ;
Nadel, Frances M. ;
Monroe, David ;
Stanley, Rachel M. ;
Borgialli, Dominic A. ;
Badawy, Mohamed K. ;
Schunk, Jeff E. ;
Quayle, Kimberly S. ;
Mahajan, Prashant ;
Lichenstein, Richard ;
Lillis, Kathleen A. ;
Tunik, Michael G. ;
Jacobs, Elizabeth S. ;
Callahan, James M. ;
Gorelick, Marc H. ;
Glass, Todd F. ;
Lee, Lois K. ;
Bachman, Michael C. ;
Cooper, Arthur ;
Powell, Elizabeth C. ;
Gerardi, Michael J. ;
Melville, Kraig A. ;
Muizelaar, J. Paul ;
Wisner, David H. ;
Zuspan, Sally Jo ;
Dean, J. Michael ;
Wootton-Gorges, Sandra L. .
LANCET, 2009, 374 (9696) :1160-1170
[24]   Machine-Learning-Based Electronic Triage More Accurately Differentiates Patients With Respect to Clinical Outcomes Compared With the Emergency Severity Index [J].
Levin, Scott ;
Toerper, Matthew ;
Hamrock, Eric ;
Hinson, Jeremiah S. ;
Barnes, Sean ;
Gardner, Heather ;
Dugas, Andrea ;
Linton, Bob ;
Kirsch, Tom ;
Kelen, Gabor .
ANNALS OF EMERGENCY MEDICINE, 2018, 71 (05) :565-574
[25]  
Li XQ, 2021, BMC HEALTH SERV RES, V21, DOI [10.1186/s12890-021-01546-y, 10.1186/s12913-021-06248-z, 10.1186/s12903-021-01614-z]
[26]   SMART on FHIR: a standards-based, interoperable apps platform for electronic health records [J].
Mandel, Joshua C. ;
Kreda, David A. ;
Mandl, Kenneth D. ;
Kohane, Isaac S. ;
Ramoni, Rachel B. .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2016, 23 (05) :899-908
[27]  
Markham Jessica L, 2018, Hosp Pediatr, V8, P28, DOI 10.1542/hpeds.2017-0040
[28]   Variations in US Hospital Performance on Imaging-use Measures [J].
Mathias, Jason S. ;
Feinglass, Joe ;
Baker, David W. .
MEDICAL CARE, 2012, 50 (09) :808-814
[29]   The Cardiac Children's Hospital Early Warning Score (C-CHEWS) [J].
McLellan, Mary C. ;
Connor, Jean A. .
JOURNAL OF PEDIATRIC NURSING-NURSING CARE OF CHILDREN & FAMILIES, 2013, 28 (02) :171-178
[30]   Variability in Case-mix Adjusted In-hospital Cardiac Arrest Rates [J].
Merchant, Raina M. ;
Yang, Lin ;
Becker, Lance B. ;
Berg, Robert A. ;
Nadkarni, Vinay ;
Nichol, Graham ;
Carr, Brendan G. ;
Mitra, Nandita ;
Bradley, Steven M. ;
Abella, Benjamin S. ;
Groeneveld, Peter W. .
MEDICAL CARE, 2012, 50 (02) :124-130