Cheeger Sets for Rotationally Symmetric Planar Convex Bodies

被引:4
作者
Canete, Antonio [1 ]
机构
[1] Univ Seville, Seville, Spain
关键词
Cheeger set; Rotationally symmetric; CONSTANT; UNIQUENESS;
D O I
10.1007/s00025-021-01539-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we obtain some properties of the Cheeger set C-Omega associated to a k-rotationally symmetric planar convex body Omega. More precisely, we prove that C-Omega is also k-rotationally symmetric and that the boundary of C-Omega touches all the edges of Omega.
引用
收藏
页数:15
相关论文
共 53 条
[1]  
Alter F, 2005, INTERFACE FREE BOUND, V7, P29
[2]   A characterization of convex calibrable sets in IRN [J].
Alter, F ;
Caselles, V ;
Chambolle, A .
MATHEMATISCHE ANNALEN, 2005, 332 (02) :329-366
[3]   Uniqueness of the Cheeger set of a convex body [J].
Alter, Francois ;
Caselles, Vicent .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (01) :32-44
[4]   Some isoperimetric inequalities with respect to monomial weights [J].
Alvino, Angelo ;
Brock, Friedemann ;
Chiacchio, Francesco ;
Mercaldo, Anna ;
Posteraro, Maria Rosaria .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2021, 27
[5]  
[Anonymous], 2011, Surv. Math. Appl
[6]  
[Anonymous], 2003, Comment. Math. Univ. Carol
[7]  
[Anonymous], 1991, Unsolved Problems in Geometry
[8]   Isoperimetric constants and some lower bounds for the eigenvalues of the P-Laplacian [J].
Avinyo, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (01) :177-180
[9]  
Besicovitch AS., 1952, Q J MATH OXF SER, V3, P42, DOI DOI 10.1093/QMATH/3.1.42
[10]   On the Cheeger problem for rotationally invariant domains [J].
Bobkov, Vladimir ;
Parini, Enea .
MANUSCRIPTA MATHEMATICA, 2021, 166 (3-4) :503-522