Real-World Variability in the Prediction of Intracranial Aneurysm Wall Shear Stress: The 2015 International Aneurysm CFD Challenge

被引:82
|
作者
Valen-Sendstad, Kristian [1 ,2 ]
Bergersen, Aslak W. [1 ,2 ,3 ]
Shimogonya, Yuji [4 ]
Goubergrits, Leonid [5 ]
Bruening, Jan [5 ]
Pallares, Jordi [6 ]
Cito, Salvatore [6 ]
Piskin, Senol [7 ]
Pekkan, Kerem [8 ]
Geers, Arjan J. [9 ]
Larrabide, Ignacio [10 ]
Rapaka, Saikiran [11 ]
Mihalef, Viorel [11 ]
Fu, Wenyu [12 ]
Qiao, Aike [13 ]
Jain, Kartik [1 ,2 ,14 ,15 ]
Roller, Sabine [14 ]
Mardal, Kent-Andre [1 ,2 ,3 ]
Kamakoti, Ramji [16 ]
Spirka, Thomas [17 ]
Ashton, Neil [18 ]
Revell, Alistair [19 ]
Aristokleous, Nicolas [20 ]
Houston, J. Graeme [21 ]
Tsuji, Masanori [22 ]
Ishida, Fujimaro [22 ]
Menon, Prahlad G. [23 ]
Browne, Leonard D. [20 ]
Broderick, Stephen [20 ]
Shojima, Masaaki [24 ]
Koizumi, Satoshi [24 ]
Barbour, Michael [25 ]
Aliseda, Alberto [25 ]
Morales, Hernan G. [26 ]
Lefevre, Thierry [26 ]
Hodis, Simona [27 ]
Al-Smadi, Yahia M. [28 ]
Tran, Justin S. [29 ]
Marsden, Alison L. [29 ]
Vaippummadhom, Sreeja [30 ]
Einstein, G. Albert [30 ]
Brown, Alistair G. [31 ]
Debus, Kristian [31 ]
Niizuma, Kuniyasu [32 ]
Rashad, Sherif [32 ]
Sugiyama, Shin-ichiro [33 ]
Khan, M. Owais [34 ]
Updegrove, Adam R. [35 ]
Shadden, Shawn C. [35 ]
Cornelissen, Bart M. W. [36 ]
机构
[1] Simula Res Lab, Lysaker, Norway
[2] Ctr Cardiol Innovat, Lysaker, Norway
[3] Univ Oslo, Oslo, Norway
[4] Nihon Univ, Tokyo, Japan
[5] Charite Univ Med Berlin, Berlin, Germany
[6] Univ Rovira & Virgili, Tarragona, Spain
[7] Univ Texas San Antonio, San Antonio, TX USA
[8] Koc Univ, Istanbul, Turkey
[9] Univ Pompeu Fabra, Barcelona, Spain
[10] Univ Nacl Ctr Prov Buenos Aires, Buenos Aires, DF, Argentina
[11] Siemens Med Solut USA Inc, Malvern, PA USA
[12] Beijing Union Univ, Beijing, Peoples R China
[13] Beijing Univ Technol, Beijing, Peoples R China
[14] Univ Siegen, Siegen, Germany
[15] Univ Zurich, Zurich, Switzerland
[16] Dassault Syst, Paris, France
[17] Simpleware Software Solut, Exeter, Devon, England
[18] Univ Oxford, Oxford, England
[19] Univ Manchester, Manchester, Lancs, England
[20] Univ Limerick, Limerick, Ireland
[21] Univ Dundee, Dundee, Scotland
[22] Mie Chuo Med Ctr, Tsu, Mie, Japan
[23] Univ Pittsburgh, Pittsburgh, PA USA
[24] Univ Tokyo, Tokyo, Japan
[25] Univ Washington, Seattle, WA 98195 USA
[26] Medisys Philips Res Paris, Paris, France
[27] Texas A&M Univ, Kingsville, TX USA
[28] Jordan Univ Sci & Technol, Irbid, Jordan
[29] Stanford Univ, Stanford, CA 94305 USA
[30] EinNel Technl, Madras, Tamil Nadu, India
[31] Siemens PLM Software, Plano, TX USA
[32] Tohoku Univ, Sendai, Miyagi, Japan
[33] Kohnan Hosp, Sendai, Miyagi, Japan
[34] Univ Toronto, Toronto, ON, Canada
[35] Univ Calif Berkeley, Berkeley, CA 94720 USA
[36] Acad Med Ctr, Amsterdam, Netherlands
[37] Univ Magdeburg, Magdeburg, Germany
[38] Wakayama Rosai Hosp, Wakayama, Japan
关键词
Intracranial aneurysm; Patient-specific modelling; Wall shear stress; Rupture risk; Uncertainty quantification; COMPUTATIONAL FLUID-DYNAMICS; BOUNDARY-CONDITIONS; RUPTURE STATUS; FLOW; HEMODYNAMICS; IMPACT; SEGMENTATION; SIMULATIONS; STRATEGY; MODELS;
D O I
10.1007/s13239-018-00374-2
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Purpose-Image-based computational fluid dynamics (CFD) is widely used to predict intracranial aneurysm wall shear stress (WSS), particularly with the goal of improving rupture risk assessment. Nevertheless, concern has been expressed over the variability of predicted WSS and inconsistent associations with rupture. Previous challenges, and studies from individual groups, have focused on individual aspects of the image-based CFD pipeline. The aim of this Challenge was to quantify the total variability of the whole pipeline. Methods-3D rotational angiography image volumes of five middle cerebral artery aneurysms were provided to participants, who were free to choose their segmentation methods, boundary conditions, and CFD solver and settings. Participants were asked to fill out a questionnaire about their solution strategies and experience with aneurysm CFD, and provide surface distributions of WSS magnitude, from which we objectively derived a variety of hemodynamic parameters. Results-A total of 28 datasets were submitted, from 26 teams with varying levels of self-assessed experience. Wide variability of segmentations, CFD model extents, and inflow rates resulted in interquartile ranges of sac average WSS up to 56%, which reduced to < 30% after normalizing by parent artery WSS. Sac-maximum WSS and low shear area were more variable, while rank-ordering of cases by low or high shear showed only modest consensus among teams. Experience was not a significant predictor of variability. Conclusions-Wide variability exists in the prediction of intracranial aneurysm WSS. While segmentation and CFD solver techniques may be difficult to standardize across groups, our findings suggest that some of the variability in image-based CFD could be reduced by establishing guidelines for model extents, inflow rates, and blood properties, and by encouraging the reporting of normalized hemodynamic parameters.
引用
收藏
页码:544 / 564
页数:21
相关论文
共 26 条
  • [1] Real-World Variability in the Prediction of Intracranial Aneurysm Wall Shear Stress: The 2015 International Aneurysm CFD Challenge
    Kristian Valen-Sendstad
    Aslak W. Bergersen
    Yuji Shimogonya
    Leonid Goubergrits
    Jan Bruening
    Jordi Pallares
    Salvatore Cito
    Senol Piskin
    Kerem Pekkan
    Arjan J. Geers
    Ignacio Larrabide
    Saikiran Rapaka
    Viorel Mihalef
    Wenyu Fu
    Aike Qiao
    Kartik Jain
    Sabine Roller
    Kent-Andre Mardal
    Ramji Kamakoti
    Thomas Spirka
    Neil Ashton
    Alistair Revell
    Nicolas Aristokleous
    J. Graeme Houston
    Masanori Tsuji
    Fujimaro Ishida
    Prahlad G. Menon
    Leonard D. Browne
    Stephen Broderick
    Masaaki Shojima
    Satoshi Koizumi
    Michael Barbour
    Alberto Aliseda
    Hernán G. Morales
    Thierry Lefèvre
    Simona Hodis
    Yahia M. Al-Smadi
    Justin S. Tran
    Alison L. Marsden
    Sreeja Vaippummadhom
    G. Albert Einstein
    Alistair G. Brown
    Kristian Debus
    Kuniyasu Niizuma
    Sherif Rashad
    Shin-ichiro Sugiyama
    M. Owais Khan
    Adam R. Updegrove
    Shawn C. Shadden
    Bart M. W. Cornelissen
    Cardiovascular Engineering and Technology, 2018, 9 : 544 - 564
  • [2] Increased aneurysm wall permeability colocalized with low wall shear stress in unruptured saccular intracranial aneurysm
    Wang, Yajie
    Sun, Jie
    Li, Rui
    Liu, Peng
    Liu, Xian
    Ji, Jiansong
    Chen, Chunmiao
    Chen, Yu
    Qi, Haikun
    Li, Yunduo
    Zhang, Longhui
    Jia, Luqiong
    Peng, Fei
    Fu, Mingzhu
    Wang, Yishi
    Xu, Min
    Kong, Chunli
    Xia, Shuiwei
    Wang, Xiaole
    He, Le
    Zhang, Qiang
    Chen, Zhensen
    Liu, Aihua
    Li, Youxiang
    Lv, Ming
    Chen, Huijun
    JOURNAL OF NEUROLOGY, 2022, 269 (05) : 2715 - 2719
  • [3] Increased aneurysm wall permeability colocalized with low wall shear stress in unruptured saccular intracranial aneurysm
    Yajie Wang
    Jie Sun
    Rui Li
    Peng Liu
    Xian Liu
    Jiansong Ji
    Chunmiao Chen
    Yu Chen
    Haikun Qi
    Yunduo Li
    Longhui Zhang
    Luqiong Jia
    Fei Peng
    Mingzhu Fu
    Yishi Wang
    Min Xu
    Chunli Kong
    Shuiwei Xia
    Xiaole Wang
    Le He
    Qiang Zhang
    Zhensen Chen
    Aihua Liu
    Youxiang Li
    Ming Lv
    Huijun Chen
    Journal of Neurology, 2022, 269 : 2715 - 2719
  • [4] Wall Shear Stress Estimated With Phase Contrast MRI in an In Vitro and In Vivo Intracranial Aneurysm
    van Ooij, Pim
    Potters, Wouter V.
    Guedon, Annetje
    Schneiders, Joppe J.
    Marquering, Henk A.
    Majoie, Charles B.
    vanBavel, Ed
    Nederveen, Aart J.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2013, 38 (04) : 876 - 884
  • [5] Intracranial aneurysm wall motion and wall shear stress from 4D computerized tomographic angiography images
    Castro, Marcelo A.
    Ahumada Olivares, Mara C.
    Putman, Christopher M.
    Cebral, Juan R.
    MEDICAL IMAGING 2013: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2013, 8672
  • [6] Effects of smoking and hypertension on wall shear stress and oscillatory shear index at the site of intracranial aneurysm formation
    Singh, Pankaj K.
    Marzo, Alberto
    Howard, Bethany
    Rufenacht, Daniel A.
    Bijlenga, Philippe
    Frangi, Alejandro F.
    Lawford, Patricia V.
    Coley, Stuart C.
    Hose, D. Rodney
    Patel, Umang J.
    CLINICAL NEUROLOGY AND NEUROSURGERY, 2010, 112 (04) : 306 - 313
  • [7] Propose a Wall Shear Stress Divergence to Estimate the Risks of Intracranial Aneurysm Rupture
    Zhang, Y.
    Takao, H.
    Murayama, Y.
    Qian, Y.
    SCIENTIFIC WORLD JOURNAL, 2013,
  • [8] Time analysis of aneurysm wall shear stress for both Newtonian and Casson flows from image-based CFD models
    Castro, Marcelo A.
    Ahumada Olivares, Maria C.
    Putman, Christopher M.
    Cebral, Juan R.
    MEDICAL IMAGING 2014: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2014, 9038
  • [9] Thinner Regions of Intracranial Aneurysm Wall Correlate with Regions of Higher Wall Shear Stress: A 7T MRI Study
    Blankena, R.
    Kleinloog, R.
    Verweij, B. H.
    van Ooij, P.
    ten Haken, B.
    Luijten, P. R.
    Rinkel, G. J. E.
    Zwanenburg, J. J. M.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2016, 37 (07) : 1310 - 1317
  • [10] Association of wall shear stress with intracranial aneurysm rupture: systematic review and meta-analysis
    Zhou, Geng
    Zhu, Yueqi
    Yin, Yanling
    Su, Ming
    Li, Minghua
    SCIENTIFIC REPORTS, 2017, 7