Analytical Approximate Solution of Space-Time Fractional Diffusion Equation with a Moving Boundary Condition

被引:8
|
作者
Das, Subir [1 ]
Kumar, Rajnesh [1 ]
Gupta, Praveen Kumar [1 ]
机构
[1] Banaras Hindu Univ, Inst Technol, Dept Appl Math, Varanasi 221005, Uttar Pradesh, India
来源
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES | 2011年 / 66卷 / 05期
关键词
Fractional Diffusion Equation; Moving Boundary Problem; Fractional Solute Release; Error Function; Homotopy Perturbation Method; HOMOTOPY PERTURBATION METHOD; VARIATIONAL ITERATION METHOD; DRUG-RELEASE DEVICES; DIFFERENTIAL-EQUATIONS; NONLINEAR PROBLEMS; DECOMPOSITION METHOD; SOLIDIFICATION; OSCILLATORS; BIFURCATION; DERIVATIVES;
D O I
10.1515/zna-2011-0503
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The homotopy perturbation method is used to find an approximate analytic solution of the problem involving a space-time fractional diffusion equation with a moving boundary. This mathematical technique is used to solve the problem which performs extremely well in terms of efficiency and simplicity. Numerical solutions of the problem reveal that only a few iterations are needed to obtain accurate approximate analytical solutions. The results obtained are presented graphically.
引用
收藏
页码:281 / 288
页数:8
相关论文
共 50 条
  • [1] Approximate analytical solution of two-dimensional space-time fractional diffusion equation
    Pandey, Prashant
    Kumar, Sachin
    Gomez, Francisco
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (12) : 7194 - 7207
  • [2] Solution of Moving Boundary Space-Time Fractional Burger's Equation
    Abdel-Salam, E. A-B
    Yousif, E. A.
    Arko, Y. A. S.
    Gumma, E. A. E.
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [3] Analytical approximate solution for nonlinear space-time fractional Klein Gordon equation
    Khaled A. Gepreel
    Mohamed S. Mohameda
    ChinesePhysicsB, 2013, 22 (01) : 33 - 38
  • [4] Solution for a Space-time Fractional Diffusion Equation
    Liu, Qiyu
    Lv, Longjin
    PROCEEDINGS OF THE 2017 2ND INTERNATIONAL CONFERENCE ON MODELLING, SIMULATION AND APPLIED MATHEMATICS (MSAM2017), 2017, 132 : 180 - 184
  • [5] Analytical Solution of the Space-Time Fractional Reaction–Diffusion Equation with Variable Coefficients
    E. I. Mahmoud
    Journal of Mathematical Sciences, 2024, 285 (4) : 505 - 519
  • [6] Analytical approximate solution for nonlinear space-time fractional Klein-Gordon equation
    Gepreel, Khaled A.
    Mohamed, Mohamed S.
    CHINESE PHYSICS B, 2013, 22 (01)
  • [7] Analytical solution of the space-time fractional hyperdiffusion equation
    Tawfik, Ashraf M.
    Fichtner, Horst
    Elhanbaly, A.
    Schlickeiser, Reinhard
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 510 : 178 - 187
  • [8] Semianalytic Solution of Space-Time Fractional Diffusion Equation
    Elsaid, A.
    Shamseldeen, S.
    Madkour, S.
    INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 2016
  • [9] ANALYTICAL SOLUTION OF THE SPACE-TIME FRACTIONAL NONLINEAR SCHRODINGER EQUATION
    Abdel-Salam, Emad A-B.
    Yousif, Eltayeb A.
    El-Aasser, Mostafa A.
    REPORTS ON MATHEMATICAL PHYSICS, 2016, 77 (01) : 19 - 34
  • [10] Analytical solution for a generalized space-time fractional telegraph equation
    Fino, Ahmad Z.
    Ibrahim, Hassan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2013, 36 (14) : 1813 - 1824