Analytical Approximate Solution of Space-Time Fractional Diffusion Equation with a Moving Boundary Condition

被引:8
作者
Das, Subir [1 ]
Kumar, Rajnesh [1 ]
Gupta, Praveen Kumar [1 ]
机构
[1] Banaras Hindu Univ, Inst Technol, Dept Appl Math, Varanasi 221005, Uttar Pradesh, India
来源
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES | 2011年 / 66卷 / 05期
关键词
Fractional Diffusion Equation; Moving Boundary Problem; Fractional Solute Release; Error Function; Homotopy Perturbation Method; HOMOTOPY PERTURBATION METHOD; VARIATIONAL ITERATION METHOD; DRUG-RELEASE DEVICES; DIFFERENTIAL-EQUATIONS; NONLINEAR PROBLEMS; DECOMPOSITION METHOD; SOLIDIFICATION; OSCILLATORS; BIFURCATION; DERIVATIVES;
D O I
10.1515/zna-2011-0503
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The homotopy perturbation method is used to find an approximate analytic solution of the problem involving a space-time fractional diffusion equation with a moving boundary. This mathematical technique is used to solve the problem which performs extremely well in terms of efficiency and simplicity. Numerical solutions of the problem reveal that only a few iterations are needed to obtain accurate approximate analytical solutions. The results obtained are presented graphically.
引用
收藏
页码:281 / 288
页数:8
相关论文
共 48 条
[1]  
A-zisik M.N., 1993, Heat conduction
[2]  
[Anonymous], NONLINEAR SCI LETT A
[3]  
Ates I, 2009, INT J NONLIN SCI NUM, V10, P877
[4]   Approximate Solutions for Conservative Nonlinear Oscillators by He's Homotopy Method [J].
Belendez, Augusto ;
Alvarez, Mariela L. ;
Mendez, David I. ;
Fernandez, Elena ;
Yebra, Maria S. ;
Belendez, Tarsicio .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2008, 63 (09) :529-537
[5]  
Cao L, 2009, INT J NONLIN SCI NUM, V10, P1319
[6]  
Carslaw H.S., 1986, Conduction of Heat In Solids, V2nde
[7]   Application of He's homotopy perturbation method to stiff systems of ordinary differential equations [J].
Darvishi, Mohammad Taghi ;
Khani, Farzad .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2008, 63 (1-2) :19-23
[8]  
Das S, 2008, INT J NONLIN SCI NUM, V9, P361
[9]  
Das S, 2009, INT J NONLIN SCI NUM, V10, P873
[10]   A note on fractional diffusion equations [J].
Das, S. .
CHAOS SOLITONS & FRACTALS, 2009, 42 (04) :2074-2079