Use of principal component analysis and the GE-biplot for the graphical exploration of gene expression data

被引:10
作者
Pittelkow, Y [1 ]
Wilson, SR
机构
[1] Australian Natl Univ, Inst Math Sci, Ctr Bioinformat Sci, Canberra, ACT 0200, Australia
[2] Australian Natl Univ, Inst Math Sci, Ctr Math & Applicat, Canberra, ACT 0200, Australia
关键词
bioinformatics; biplot; data visualization; GE-biplot; gene expression data; microarray data; multivariate exploratory data analysis; principal component analysis; SVD;
D O I
10.1111/j.1541-0420.2005.00366.x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This note is in response to Wouters et al. (2003, Biometrics 59, 1131-1139) who compared three methods for exploring gene expression data. Contrary to their summary that principal component analysis is not very informative, we show that it is possible to determine principal component analyses that are useful for exploratory analysis of microarray data. We also present another biplot representation, the GE-biplot (Gene Expression biplot), that is a useful method for exploring gene expression data with the major advantage of being able to aid interpretation of both the samples and the genes relative to each other.
引用
收藏
页码:630 / 632
页数:3
相关论文
共 4 条
[1]   Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring [J].
Golub, TR ;
Slonim, DK ;
Tamayo, P ;
Huard, C ;
Gaasenbeek, M ;
Mesirov, JP ;
Coller, H ;
Loh, ML ;
Downing, JR ;
Caligiuri, MA ;
Bloomfield, CD ;
Lander, ES .
SCIENCE, 1999, 286 (5439) :531-537
[2]  
KRZANOWSKI WJ, 1994, MULTIVARIATE ANAL 1
[3]  
Pittelkow YE, 2003, STAT APPL GENETICS M
[4]   Graphical exploration of gene expression data:: A comparative study of three multivariate methods [J].
Wouters, L ;
Göhlmann, HW ;
Bijnens, L ;
Kass, SU ;
Molenberghs, G ;
Lewi, PJ .
BIOMETRICS, 2003, 59 (04) :1131-1139