Engineering Three-Dimensional Moire Flat Bands

被引:12
作者
Xian, Lede [1 ,2 ]
Fischer, Ammon [3 ,4 ]
Claassen, Martin [5 ]
Zhang, Jin [2 ]
Rubio, Angel [2 ,6 ,7 ]
Kennes, Dante M. [2 ,3 ,4 ]
机构
[1] Songshan Lake Mat Lab, Dongguan 523808, Guangdong, Peoples R China
[2] Ctr Free Electron Laser Sci, Max Planck Inst Struct & Dynam Matter, D-22761 Hamburg, Germany
[3] Rhein Westfal TH Aachen, Inst Theorie Stat Phys, D-52056 Aachen, Germany
[4] JARA Fundamentals Future Informat Technol, D-52056 Aachen, Germany
[5] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA
[6] Simons Fdn Flatiron Inst, Ctr Computat Quantum Phys, New York, NY 10010 USA
[7] Univ Basque Country, Dept Fis Mat, Nanobio Spect Grp, San Sebastian 20018, Spain
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
Twisted moire materials; Flat bands; Strongly correlated electrons; Superconductivity; Ab Initio calculations; MAGIC-ANGLE; SUPERCONDUCTIVITY; INSULATOR; PHYSICS; STATES; MOTT;
D O I
10.1021/acs.nanolett.1c01684
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Twisting two adjacent layers of van der Waals materials with respect to each other can lead to flat two-dimensional electronic bands which enables a wealth of physical phenomena. Here, we generalize this concept of so-called moire flat bands to engineer flat bands in all three spatial dimensions controlled by the twist angle. The basic concept is to stack the material such that the large spatial moire interference patterns are spatially shifted from one twisted layer to the next. We exemplify the general concept by considering graphitic systems, boron nitride, and WSe2, but the approach is applicable to any two-dimensional van der Waals material. For hexagonal boron nitride, we develop an ab initio fitted tight binding model that captures the corresponding three-dimensional low-energy electronic structure. We outline that interesting three-dimensional correlated phases of matter can be induced and controlled following this route, including quantum magnets and unconventional superconducting states.
引用
收藏
页码:7519 / 7526
页数:8
相关论文
共 50 条
[31]   Dirac Fermion Cloning, Moire Flat Bands, and Magic Lattice Constants in Epitaxial Monolayer Graphene [J].
Lu, Qiangsheng ;
Le, Congcong ;
Zhang, Xiaoqian ;
Cook, Jacob ;
He, Xiaoqing ;
Zarenia, Mohammad ;
Vaninger, Mitchel ;
Miceli, Paul F. ;
Singh, David J. ;
Liu, Chang ;
Qin, Hailang ;
Chiang, Tai-Chang ;
Chiu, Ching-Kai ;
Vignale, Giovanni ;
Bian, Guang .
ADVANCED MATERIALS, 2022, 34 (26)
[32]   Advance in two-dimensional twisted moire materials: Fabrication, properties, and applications [J].
Yang, Han ;
Liu, Liwei ;
Yang, Huixia ;
Zhang, Yu ;
Wu, Xu ;
Huang, Yuan ;
Gao, Hong-Jun ;
Wang, Yeliang .
NANO RESEARCH, 2022,
[33]   Topological flat bands in rhombohedral tetralayer and multilayer graphene on hexagonal boron nitride moire superlattices [J].
Park, Youngju ;
Kim, Yeonju ;
Chittari, Bheema Lingam ;
Jung, Jeil .
PHYSICAL REVIEW B, 2023, 108 (15)
[34]   Advance in two-dimensional twisted moire materials: Fabrication properties, and applications [J].
Yang, Han ;
Liu, Liwei ;
Yang, Huixia ;
Zhang, Yu ;
Wu, Xu ;
Huang, Yuan ;
Gao, Hong-Jun ;
Wang, Yeliang .
NANO RESEARCH, 2023, 16 (02) :2579-2596
[35]   Three-Dimensional Topological Photonic Crystals [J].
Liu, Jian-Wei ;
Liu, Gui-Geng ;
Zhang, Baile .
PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2024, 181 :99-112
[36]   Progress on band structure engineering of twisted bilayer and two-dimensional moire heterostructures* [J].
Yao, Wei ;
Aeschlimann, Martin ;
Zhou, Shuyun .
CHINESE PHYSICS B, 2020, 29 (12)
[37]   Towards holographic flat bands [J].
Grandi, Nicolas ;
Juricic, Vladimir ;
Salazar Landea, Ignacio ;
Soto-Garrido, Rodrigo .
JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (05)
[38]   Designing flat bands by strain [J].
Bi, Zhen ;
Yuan, Noah F. Q. ;
Fu, Liang .
PHYSICAL REVIEW B, 2019, 100 (03)
[39]   Chiral spin liquids at finite temperature in a three-dimensional Kitaev model [J].
Kato, Yasuyuki ;
Kamiya, Yoshitomo ;
Nasu, Joji ;
Motome, Yukitoshi .
PHYSICAL REVIEW B, 2017, 96 (17)
[40]   Flat Bands and Mechanical Deformation Effects in the Moire Superlattice of MoS2-WSe2 Heterobilayers [J].
Waters, Dacen ;
Nie, Yifan ;
Lupke, Felix ;
Pan, Yi ;
Foelsch, Stefan ;
Lin, Yu-Chuan ;
Jariwala, Bhakti ;
Zhang, Kehao ;
Wang, Chong ;
Lv, Hongyan ;
Cho, Kyeongjae ;
Xiao, Di ;
Robinson, Joshua A. ;
Feenstra, Randall M. .
ACS NANO, 2020, 14 (06) :7564-7573