An integrated hybrid interlayer for polysulfides/selenides regulation toward advanced Li-SeS2 batteries

被引:33
作者
Zhang, Yin [1 ]
Guo, Yi [2 ]
Wang, Boya [1 ]
Wei, Yunhong [1 ]
Jing, Peng [1 ]
Wu, Hao [1 ]
Dai, Zudian [1 ]
Wang, Mei [1 ]
Zhang, Yun [1 ]
机构
[1] Sichuan Univ, Coll Mat Sci & Engn, Dept Adv Energy Mat, Chengdu 610064, Peoples R China
[2] Sichuan Univ Sci & Engn, Coll Mat Sci & Engn, Zigong 643000, Peoples R China
关键词
Li-SeS2; batteries; Free-standing interlayer; Graphene sponge; Titanium nitride; Electrocatalytic effect; LITHIUM-SULFUR BATTERIES; MESOPOROUS CARBON; SELENIUM DISULFIDE; PERFORMANCE; CATHODE; SULFIDE; LIFE; SES2; MECHANISM; CAPACITY;
D O I
10.1016/j.carbon.2020.01.102
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Selenium disulfide (SeS2) is one of the promising cathode materials for high energy density batteries, since it has a competitive theoretical specific capacity (1345 mAh g(-1)) and much better electrical conductivity over sulfur (S). Similar to S cathode, however, the practical application of SeS2 cathode is also impeded by poor cycling performance caused by the shuttling phenomenon of soluble lithium polysulfides/selenides. In this work, a graphene sponge/titanium nitride (TiN) nanowires composite is prepared as the well-designed multi-functional hybrid interlayer to be applied in Li-SeS2 batteries for the first time. The three-dimensional porous conductive framework constructed by graphene nanoscrolls/ nanosheets coexited sponge and TiN nanowires provides efficient transfer channels for electrons and ions. Moreover, TiN not only has strong chemical adsorption to trap the soluble polysulfides/selenides, but also possesses electrocatalytic effects to promote the electrochemical reaction of the cathodic solidliquid/liquid-solid and the anodic solid-liquid conversions. By virtue of the multi-functional capabilities, the as-assembled cells equipped with the hybrid interlayer exhibit an outstanding electrochemical performance with a long cycling life, a low capacity decay (0.08% per cycle), and superior rate capability (493 mAh g(-1) at 5 A g(-1)). This work offers a new and efficient strategy to propel[ the development of high-performance Li-SeS2 batteries. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页码:413 / 422
页数:10
相关论文
共 56 条
[1]   A New Class of Lithium and Sodium Rechargeable Batteries Based on Selenium and Selenium-Sulfur as a Positive Electrode [J].
Abouimrane, Ali ;
Dambournet, Damien ;
Chapman, Karena W. ;
Chupas, Peter J. ;
Weng, Wei ;
Amine, Khalil .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (10) :4505-4508
[2]   TiO2-B nanowires [J].
Armstrong, AR ;
Armstrong, G ;
Canales, J ;
Bruce, PG .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (17) :2286-2288
[3]   Lithium-ion intercalation into TiO2-B nanowires [J].
Armstrong, AR ;
Armstrong, G ;
Canales, J ;
García, R ;
Bruce, PG .
ADVANCED MATERIALS, 2005, 17 (07) :862-+
[4]   Investigations of lithium-sulfur batteries using electrochemical impedance spectroscopy [J].
Canas, Natalia A. ;
Hirose, Kei ;
Pascucci, Brigitta ;
Wagner, Norbert ;
Friedrich, K. Andreas ;
Hiesgen, Renate .
ELECTROCHIMICA ACTA, 2013, 97 :42-51
[5]   (De)Lithiation Mechanism of Li/SeSx (x=0-7) Batteries Determined by in Situ Synchrotron X-ray Diffraction and X-ray Absorption Spectroscopy [J].
Cui, Yanjie ;
Abouimrane, Ali ;
Lu, Jun ;
Bolin, Trudy ;
Ren, Yang ;
Weng, Wei ;
Sun, Chengjun ;
Maroni, Victor A. ;
Heald, Steve M. ;
Amine, Khalil .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (21) :8047-8056
[6]   Mesoporous Titanium Nitride-Enabled Highly Stable Lithium-Sulfur Batteries [J].
Cui, Zhiming ;
Zu, Chenxi ;
Zhou, Weidong ;
Manthiram, Arumugam ;
Goodenough, John B. .
ADVANCED MATERIALS, 2016, 28 (32) :6926-+
[7]   Functional mechanism analysis and customized structure design of interlayers for high performance Li-S battery [J].
Deng, Nanping ;
Liu, Yong ;
Li, Quanxiang ;
Yan, Jing ;
Lei, Weiwei ;
Wang, Gang ;
Wang, Liyuan ;
Liang, Yueyao ;
Kang, Weimin ;
Cheng, Bowen .
ENERGY STORAGE MATERIALS, 2019, 23 :314-349
[8]   Cobalt in Nitrogen-Doped Graphene as Single-Atom Catalyst for High-Sulfur Content Lithium-Sulfur Batteries [J].
Du, Zhenzhen ;
Chen, Xingjia ;
Hu, Wei ;
Chuang, Chenghao ;
Xie, Shuai ;
Hu, Ajuan ;
Yan, Wensheng ;
Kong, Xianghua ;
Wu, Xiaojun ;
Ji, Hengxing ;
Wan, Li-Jun .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (09) :3977-3985
[9]   More Reliable Lithium-Sulfur Batteries: Status, Solutions and Prospects [J].
Fang, Ruopian ;
Zhao, Shiyong ;
Sun, Zhenhua ;
Wang, Wei ;
Cheng, Hui-Ming ;
Li, Feng .
ADVANCED MATERIALS, 2017, 29 (48)
[10]   Hydrothermal Cation Exchange Enabled Gradual Evolution of Au@ZnS-AgAuS Yolk-Shell Nanocrystals and Their Visible Light Photocatalytic Applications [J].
Feng, Jingwen ;
Liu, Jia ;
Cheng, Xiaoyan ;
Liu, Jiajia ;
Xu, Meng ;
Zhang, Jiatao .
ADVANCED SCIENCE, 2018, 5 (01)