Nonsimple isotropic incompressible linear fluids surrounding one-dimensional structures

被引:7
|
作者
Giusteri, Giulio G. [2 ]
Marzocchi, Alfredo [1 ]
Musesti, Alessandro [1 ]
机构
[1] Univ Cattolica Sacro Cuore, Dipartimento Matemat & Fis N Tartaglia, I-25121 Brescia, Italy
[2] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, I-20125 Milan, Italy
关键词
MECHANICS; POWERS;
D O I
10.1007/s00707-010-0387-5
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We introduce a model of fluid which has four main features: it readily emerges by a general continuum mechanical framework; it is a generalization maintaining most of the physical features of incompressible Newtonian fluids; it can model adherence interactions with one-dimensional structures surrounded by the fluid; the associated initial boundary-value problem is well-posed on three-dimensional domains.
引用
收藏
页码:191 / 204
页数:14
相关论文
共 50 条
  • [11] Pulse propagation in finite linear one-dimensional periodic structures
    Torrese, G
    Schriemer, HP
    Cada, M
    APPLICATIONS OF PHOTONIC TECHNOLOGY, CLOSING THE GAP BETWEEN THEORY, DEVELOPMENT, AND APPLICATION, PT 1 AND 2, 2004, 5577 : 568 - 578
  • [12] Fundamental limit to linear one-dimensional slow light structures
    Miller, David A. B.
    PHYSICAL REVIEW LETTERS, 2007, 99 (20)
  • [13] Modeling one-dimensional incompressible duct flows
    Balino, Jorge Luis
    20TH EUROPEAN CONFERENCE ON MODELLING AND SIMULATION ECMS 2006: MODELLING METHODOLOGIES AND SIMULATION: KEY TECHNOLOGIES IN ACADEMIA AND INDUSTRY, 2006, : 657 - +
  • [14] One-Dimensional Fluids with Positive Potentials
    Riccardo Fantoni
    Journal of Statistical Physics, 2017, 166 : 1334 - 1342
  • [15] One-Dimensional Fluids with Positive Potentials
    Fantoni, Riccardo
    JOURNAL OF STATISTICAL PHYSICS, 2017, 166 (05) : 1334 - 1342
  • [16] ONE-DIMENSIONAL EQUILIBRIUM SPECTRA IN ISOTROPIC TURBULENCE
    REID, WH
    PHYSICS OF FLUIDS, 1960, 3 (01) : 72 - 77
  • [17] ON THE HYDRODYNAMICS OF TWO-DIMENSIONAL AND ONE-DIMENSIONAL FLUIDS
    ANDREEV, AF
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1980, 78 (05): : 2064 - 2072
  • [18] Surface one-dimensional structures
    Hasegawa, Shuji
    CHINESE JOURNAL OF PHYSICS, 2007, 45 (04) : 385 - 411
  • [19] One-dimensional structures in nanoconfinement
    Chang Jing
    Chen Ji
    ACTA PHYSICA SINICA, 2022, 71 (12)
  • [20] Non-dimensional linear analysis of one-dimensional wave propagation in tensegrity structures
    Yazbeck, R.
    El-Borgi, S.
    Boyd, J. G.
    Chen, M.
    Lagoudas, D. C.
    COMPOSITE STRUCTURES, 2025, 353