Blow-up problems for a semilinear heat equation with large diffusion

被引:27
作者
Ishige, K
Yagisita, H
机构
[1] Tokyo Univ Sci, Fac Sci & Technol, Dept Math, Noda, Chiba 2788510, Japan
[2] Tohoku Univ, Inst Math, Aoba Ku, Sendai, Miyagi 9808578, Japan
关键词
nonlinear diffusion equation; blow-up time; blow-up set; blow-up profile;
D O I
10.1016/j.jde.2004.10.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the blow-up problem of a semilinear heat equation, u(t)=D Delta u + u(p) in Omega x (0, T-D)(,) du/dv (x, t) = 0 on rho Omega x (0, T-D), u(x, 0) = phi(x) >= 0 in Omega, where Omega is a bounded smooth domain in R-N, T-D > 0, D > 0, and p > 1. We study the blowup time, the location of the blow-up set, and the blow-up profile of the blow-up solution for sufficiently large D. In particular, we prove that, for almost all initial data 0, if D is sufficiently large, then the solution blows-up only near the maximum points of the orthogonal projection of the initial data phi from L-2(Omega) onto the second Neumann eigenspace. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:114 / 128
页数:15
相关论文
共 16 条
[1]   On the "hot spots" conjecture of J.!Rauch [J].
Bañuelos, R ;
Burdzy, K .
JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 164 (01) :1-33
[2]   A counterexample to the "hot spots" conjecture [J].
Burdzy, K ;
Werner, W .
ANNALS OF MATHEMATICS, 1999, 149 (01) :309-317
[3]   THE BLOW-UP TIME FOR SOLUTIONS OF NONLINEAR HEAT-EQUATIONS WITH SMALL DIFFUSION [J].
FRIEDMAN, A ;
LACEY, AA .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1987, 18 (03) :711-721
[4]  
FUJITA H, 1966, J FAC SCI U TOKYO 1, V13, P109
[5]   Location of blow-up set for a semilinear parabolic equation with large diffusion [J].
Ishige, K ;
Mizoguchi, N .
MATHEMATISCHE ANNALEN, 2003, 327 (03) :487-511
[6]  
ISHIGE K., 2003, DIFFERENTIAL INTEGRA, V16, P663
[7]  
ISHIGE K, 2002, ADV DIFFERENTIAL EQU, V8, P1003
[8]   The "hot spots" conjecture for domains with two axes of symmetry [J].
Jerison, D ;
Nadirashvili, N .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 13 (04) :741-772
[9]  
Kammerer CF, 2000, MATH ANN, V317, P347
[10]  
KAWOHL B, 1985, LECT NOTES MATH, V1150, P1