Maximum principle for controlled fractional Fokker-Planck equations

被引:0
作者
Wang, Qiuxi [1 ]
机构
[1] Jilin Univ, Coll Math, Changchun 130012, Peoples R China
关键词
alpha-stable subordinator; maximum principle; stochastic optimal control problem; well-posedness; Riemann-Liouville derivative; ANOMALOUS DIFFUSION;
D O I
10.1186/s13662-015-0382-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we obtain a maximum principle for controlled fractional Fokker-Planck equations. We prove the well-posedness of a stochastic differential equation driven by an alpha-stable process. We give some estimates of the solutions by fractional calculus. A linear-quadratic example is given at the end of the paper.
引用
收藏
页数:13
相关论文
共 17 条
[1]  
[Anonymous], 2006, Controlled Markov Processes and Viscosity Solutions
[2]   From continuous time random walks to the fractional Fokker-Planck equation [J].
Barkai, E ;
Metzler, R ;
Klafter, J .
PHYSICAL REVIEW E, 2000, 61 (01) :132-138
[3]  
Bismut J., 1981, LECT NOTES MATH
[4]   CONJUGATE CONVEX FUNCTIONS IN OPTIMAL STOCHASTIC CONTROL [J].
BISMUT, JM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1973, 44 (02) :384-404
[5]   INTRODUCTORY APPROACH TO DUALITY IN OPTIMAL STOCHASTIC CONTROL [J].
BISMUT, JM .
SIAM REVIEW, 1978, 20 (01) :62-78
[6]   ANOMALOUS DIFFUSION IN ELONGATED MICELLES AND ITS LEVY FLIGHT INTERPRETATION [J].
BOUCHAUD, JP ;
OTT, A ;
LANGEVIN, D ;
URBACH, W .
JOURNAL DE PHYSIQUE II, 1991, 1 (12) :1465-1482
[7]   Stochastic linear quadratic regulators with indefinite control weight costs [J].
Chen, SP ;
Li, XJ ;
Zhou, XY .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1998, 36 (05) :1685-1702
[8]   Fractional Fokker-Planck Equation with Space and Time Dependent Drift and Diffusion [J].
Lv, Longjin ;
Qiu, Weiyuan ;
Ren, Fuyao .
JOURNAL OF STATISTICAL PHYSICS, 2012, 149 (04) :619-628
[9]   Stochastic representation of subdiffusion processes with time-dependent drift [J].
Magdziarz, Marcin .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2009, 119 (10) :3238-3252
[10]   A GENERAL STOCHASTIC MAXIMUM PRINCIPLE FOR OPTIMAL-CONTROL PROBLEMS [J].
PENG, SG .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1990, 28 (04) :966-979