Deep learning-based inertia tensor identification of the combined spacecraft

被引:6
|
作者
Chu, Weimeng [1 ]
Wu, Shunan [1 ]
He, Xiao [1 ]
Liu, Yufei [2 ]
Wu, Zhigang [3 ]
机构
[1] Dalian Univ Technol, Sch Aeronaut & Astronaut, Dalian, Peoples R China
[2] China Acad Space Technol, Qian Xuesen Lab Space Technol, Beijing, Peoples R China
[3] Dalian Univ Technol, State Key Lab Struct Anal Ind Equipment, Dalian, Peoples R China
基金
中国国家自然科学基金;
关键词
Combined spacecraft; inertia tensor; identification; deep learning; deep neural network; PARAMETER-IDENTIFICATION; NEURAL-NETWORKS; MODEL; TRACKING;
D O I
10.1177/0954410020904555
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The identification accuracy of inertia tensor of combined spacecraft, which is composed by a servicing spacecraft and a captured target, could be easily affected by the measurement noise of angular rate. Due to frequently changing operating environments of combined spacecraft in space, the measurement noise of angular rate can be very complex. In this paper, an inertia tensor identification approach based on deep learning method is proposed to improve the ability of identifying inertia tensor of combined spacecraft in the presence of complex measurement noise. A deep neural network model for identification is constructed and trained by enough training data and a designed learning strategy. To verify the identification performance of the proposed deep neural network model, two testing set with different ranks of measure noises are used for simulation tests. Comparison tests are also delivered among the proposed deep neural network model, recursive least squares identification method, and tradition deep neural network model. The comparison results show that the proposed deep neural network model yields a more accurate and stable identification performance for inertia tensor of combined spacecraft in changeable and complex operating environments.
引用
收藏
页码:1356 / 1366
页数:11
相关论文
共 50 条
  • [41] Deep Learning-Based Approach for Detecting Trajectory Modifications of Cassini-Huygens Spacecraft
    Aldabbas, Ashraf
    Gal, Zoltan
    Ghori, Khawaja Moyeezullah
    Imran, Muhammad
    Shoaib, Muhammad
    IEEE ACCESS, 2021, 9 : 39111 - 39125
  • [42] Deep reinforcement learning-based attitude control for spacecraft using control moment gyros
    Oghim, Snyoll
    Park, Junwoo
    Bang, Hyochoong
    Leeghim, Henzeh
    ADVANCES IN SPACE RESEARCH, 2025, 75 (01) : 1129 - 1144
  • [43] Inflight estimation of the Cassini spacecraft's inertia tensor
    Wertz, JA
    Lee, AY
    SPACEFLIGHT MECHANICS 2001, VOL 108, PTS 1 AND 2, 2001, 108 : 1087 - 1102
  • [44] Learning-based Control of a Spacecraft with Sloshing Propellant
    F. Angeletti
    A. Stolfi
    P. Gasbarri
    Aerotecnica Missili & Spazio, 2020, 99 (1): : 33 - 42
  • [45] Deep learning-based phenotyping reclassifies combined hepatocellular-cholangiocarcinoma
    Calderaro, Julien
    Ghaffari Laleh, Narmin
    Zeng, Qinghe
    Maille, Pascale
    Favre, Loetitia
    Pujals, Anais
    Klein, Christophe
    Bazille, Celine
    Heij, Lara R.
    Uguen, Arnaud
    Luedde, Tom
    Di Tommaso, Luca
    Beaufrere, Aurelie
    Chatain, Augustin
    Gastineau, Delphine
    Nguyen, Cong Trung
    Nguyen-Canh, Hiep
    Thi, Khuyen Nguyen
    Gnemmi, Viviane
    Graham, Rondell P.
    Charlotte, Frederic
    Wendum, Dominique
    Vij, Mukul
    Allende, Daniela S.
    Aucejo, Federico
    Diaz, Alba
    Riviere, Benjamin
    Herrero, Astrid
    Evert, Katja
    Calvisi, Diego Francesco
    Augustin, Jeremy
    Leow, Wei Qiang
    Leung, Howard Ho Wai
    Boleslawski, Emmanuel
    Rela, Mohamed
    Francois, Arnaud
    Cha, Anthony Wing-Hung
    Forner, Alejandro
    Reig, Maria
    Allaire, Manon
    Scatton, Olivier
    Chatelain, Denis
    Boulagnon-Rombi, Camille
    Sturm, Nathalie
    Menahem, Benjamin
    Frouin, Eric
    Tougeron, David
    Tournigand, Christophe
    Kempf, Emmanuelle
    Kim, Haeryoung
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [46] Combination spacecraft moment of inertia identification
    Xiong, Z. (xznuaa@nuaa.edu.cn), 1600, ICIC Express Letters Office, Tokai University, Kumamoto Campus, 9-1-1, Toroku, Kumamoto, 862-8652, Japan (07):
  • [47] Deep learning-based phenotyping reclassifies combined hepatocellular-cholangiocarcinoma
    Julien Calderaro
    Narmin Ghaffari Laleh
    Qinghe Zeng
    Pascale Maille
    Loetitia Favre
    Anaïs Pujals
    Christophe Klein
    Céline Bazille
    Lara R. Heij
    Arnaud Uguen
    Tom Luedde
    Luca Di Tommaso
    Aurélie Beaufrère
    Augustin Chatain
    Delphine Gastineau
    Cong Trung Nguyen
    Hiep Nguyen-Canh
    Khuyen Nguyen Thi
    Viviane Gnemmi
    Rondell P. Graham
    Frédéric Charlotte
    Dominique Wendum
    Mukul Vij
    Daniela S. Allende
    Federico Aucejo
    Alba Diaz
    Benjamin Rivière
    Astrid Herrero
    Katja Evert
    Diego Francesco Calvisi
    Jérémy Augustin
    Wei Qiang Leow
    Howard Ho Wai Leung
    Emmanuel Boleslawski
    Mohamed Rela
    Arnaud François
    Anthony Wing-Hung Cha
    Alejandro Forner
    Maria Reig
    Manon Allaire
    Olivier Scatton
    Denis Chatelain
    Camille Boulagnon-Rombi
    Nathalie Sturm
    Benjamin Menahem
    Eric Frouin
    David Tougeron
    Christophe Tournigand
    Emmanuelle Kempf
    Haeryoung Kim
    Nature Communications, 14
  • [48] A deep learning-based framework For ECG signal denoising based on stacked cardiac cycle tensor
    Rasti-Meymandi, Arash
    Ghaffari, Aboozar
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 71
  • [49] Deep learning-based parameter mapping for joint relaxation and diffusion tensor MR Fingerprinting
    Pirkl, Carolin M.
    Gomez, Pedro A.
    Lipp, Ilona
    Buonincontri, Guido
    Molina-Romero, Miguel
    Sekuboyina, Anjany
    Waldmannstetter, Diana
    Dannenberg, Jonathan
    Endt, Sebastian
    Merola, Alberto
    Whittaker, Joseph R.
    Tomassini, Valentina
    Tosetti, Michela
    Jones, Derek K.
    Menze, Bjoern H.
    Menzel, Marion I.
    MEDICAL IMAGING WITH DEEP LEARNING, VOL 121, 2020, 121 : 638 - 654
  • [50] Deep learning-based diffusion tensor cardiac magnetic resonance reconstruction: a comparison study
    Huang, Jiahao
    Ferreira, Pedro F.
    Wang, Lichao
    Wu, Yinzhe
    Aviles-Rivero, Angelica I.
    Schoenlieb, Carola-Bibiane
    Scott, Andrew D.
    Khalique, Zohya
    Dwornik, Maria
    Rajakulasingam, Ramyah
    De Silva, Ranil
    Pennell, Dudley J.
    Nielles-Vallespin, Sonia
    Yang, Guang
    SCIENTIFIC REPORTS, 2024, 14 (01)