Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria

被引:273
作者
Byrne, James M. [1 ]
Klueglein, Nicole [1 ]
Pearce, Carolyn [2 ,3 ]
Rosso, Kevin M. [3 ]
Appel, Erwin [4 ]
Kappler, Andreas [1 ]
机构
[1] Univ Tubingen, Ctr Appl Geosci, Geomicrobiol, D-72076 Tubingen, Germany
[2] Univ Manchester, Sch Chem, Manchester M13 9PL, Lancs, England
[3] Pacific NW Natl Lab, Richland, WA 99352 USA
[4] Univ Tubingen, Ctr Appl Geosci, Geophys, D-72076 Tubingen, Germany
关键词
PALUSTRIS STRAIN TIE-1; NANOPARTICULATE MAGNETITE; FE3-XTIXO4; NANOPARTICLES; ELECTRON-TRANSFER; REDUCTION; OXIDATION; IRON; STOICHIOMETRY; OXIDE;
D O I
10.1126/science.aaa4834
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Microorganisms are a primary control on the redox-induced cycling of iron in the environment. Despite the ability of bacteria to grow using both Fe(II) and Fe(III) bound in solid-phase iron minerals, it is currently unknown whether changing environmental conditions enable the sharing of electrons in mixed-valent iron oxides between bacteria with different metabolisms. We show through magnetic and spectroscopic measurements that the phototrophic Fe(II)-oxidizing bacterium Rhodopseudomonas palustris TIE-1 oxidizes magnetite (Fe3O4) nanoparticles using light energy. This process is reversible in co-cultures by the anaerobic Fe(III)-reducing bacterium Geobacter sulfurreducens. These results demonstrate that Fe ions bound in the highly crystalline mineral magnetite are bioavailable as electron sinks and electron sources under varying environmental conditions, effectively rendering magnetite a naturally occurring battery.
引用
收藏
页码:1473 / 1476
页数:4
相关论文
共 25 条
  • [1] Anomalous properties of magnetic nanoparticles
    Berkowitz, AE
    Kodama, RH
    Makhlouf, SA
    Parker, FT
    Spada, FE
    McNiff, EJ
    Foner, S
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1999, 196 : 591 - 594
  • [2] Bioenergetic challenges of microbial iron metabolisms
    Bird, Lina J.
    Bonnefoy, Violaine
    Newman, Dianne K.
    [J]. TRENDS IN MICROBIOLOGY, 2011, 19 (07) : 330 - 340
  • [3] Electron uptake by iron-oxidizing phototrophic bacteria
    Bose, A.
    Gardel, E. J.
    Vidoudez, C.
    Parra, E. A.
    Girguis, P. R.
    [J]. NATURE COMMUNICATIONS, 2014, 5 : 3391
  • [4] NONCOLLINEAR SPIN ARRANGEMENT IN ULTRAFINE FERRIMAGNETIC CRYSTALLITES
    COEY, JMD
    [J]. PHYSICAL REVIEW LETTERS, 1971, 27 (17) : 1140 - +
  • [5] Mineralogical and morphological constraints on the reduction of Fe(III) minerals by Geobacter sulfurreducens
    Cutting, R. S.
    Coker, V. S.
    Fellowes, J. W.
    Lloyd, J. R.
    Vaughan, D. J.
    [J]. GEOCHIMICA ET COSMOCHIMICA ACTA, 2009, 73 (14) : 4004 - 4022
  • [6] Mineral transformation associated with the microbial reduction of magnetite
    Dong, HL
    Fredrickson, JK
    Kennedy, DW
    Zachara, JM
    Kukkadapu, RK
    Onstott, TC
    [J]. CHEMICAL GEOLOGY, 2000, 169 (3-4) : 299 - 318
  • [7] Dunlop D.J., 1997, Rock magnetism: fundamentals and frontiers, V3
  • [8] Evans MichaelE., 2003, INT GEOPHYS SERIES, V86
  • [9] Determination of nanoparticulate magnetite stoichiometry by Mossbauer spectroscopy, acidic dissolution, and powder X-ray diffraction: A critical review
    Gorski, Christopher A.
    Scherer, Michelle M.
    [J]. AMERICAN MINERALOGIST, 2010, 95 (07) : 1017 - 1026
  • [10] Influence of Magnetite Stoichiometry on FeII Uptake and Nitrobenzene Reduction
    Gorski, Christopher A.
    Scherer, Michelle M.
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2009, 43 (10) : 3675 - 3680