ON C0(S, X)-DISTORTION OF THE CLASS OF ALL SEPARABLE BANACH SPACES

被引:0
作者
Galego, Eloi Medina [1 ]
Porto Da Silva, Andre Luis [1 ]
机构
[1] Univ Sao Paulo, Dept Math, IME, Rua Matao 1010, Sao Paulo, Brazil
关键词
C-0(S; X); spaces; nonlinear vector extension of Holszty ' nski Theorem; Lipschitz embeddings; EMBEDDINGS; ISOMORPHISMS; ISOMETRIES; CONSTANTS; GEOMETRY;
D O I
10.1090/proc/15625
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Suppose that K is a compact Hausdorff space, S is a locally compact Hausdorff space and X is a Banach space with Schaffer constant S(X). In this paper, we prove that if there is a map T from C(K) to C-0(S, X) satisfying 1/M parallel to f - g parallel to <= parallel to T(f) - T(g)parallel to <= M parallel to f - g parallel to, (sic)f, g is an element of C(K), with 1 <= M-2 <= S(X), then there exists a compact subset S-0 of S and a continuous function phi from S-0 onto K. This theorem on Lipschitz embeddings of C(K) into C-0(S, X) is the first nonlinear vector extension of the classical 1966 Holszty ' nski Theorem. Our result is optimal for many Banach spaces X including the spaces l(p)(n), l(p) and L-p([0, 1]), 1 < p < infinity, n >= 2, even when T is linear. The motivation to prove this result comes from the fact that it immediately yields a nontrivial lower bound for the C-0(S, X)-distortion of the class of all separable Banach spaces whenever S is a scattered space and S(X) > 1, namely S(X) itself.
引用
收藏
页码:661 / 672
页数:12
相关论文
共 19 条
[1]   EVERY SEPARABLE METRIC SPACE IS LIPSCHITZ EQUIVALENT TO A SUBSET OF C0+ [J].
AHARONI, I .
ISRAEL JOURNAL OF MATHEMATICS, 1974, 19 (03) :284-291
[2]  
Albiac F, 2006, GRAD TEXTS MATH, V233, P1
[3]   REMARKS ON AN ARTICLE BY ISRAEL AHARONI ON LIPSCHITZ EXTENSIONS IN C0 [J].
ASSOUAD, P .
ISRAEL JOURNAL OF MATHEMATICS, 1978, 31 (01) :97-100
[4]   The metric geometry of the Hamming cube and applications [J].
Baudier, Florent ;
Freeman, Daniel ;
Schlumprecht, Thomas ;
Zsak, Andras .
GEOMETRY & TOPOLOGY, 2016, 20 (03) :1427-1444
[5]   GENERALIZATION OF BANACH-STONE THEOREM [J].
CENGIZ, B .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 40 (02) :426-430
[6]   Optimal extensions of the Banach-Stone theorem [J].
Cidral, Fabiano C. ;
Galego, Eloi Medina ;
Rincon-Villamizar, Michael A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 430 (01) :193-204
[7]  
Dales HG, 2016, CMS BOOKS MATH, P1, DOI 10.1007/978-3-319-32349-7
[8]   NONLINEAR EMBEDDINGS OF SPACES OF CONTINUOUS FUNCTIONS [J].
Galego, Eloi Medina ;
Porto da Silva, Andre Luis .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (04) :1555-1566
[9]   AN AMIR-CAMBERN THEOREM FOR QUASI-ISOMETRIES OF C0(K, X) SPACES [J].
Galego, Eloi Medina ;
Porto da Silva, Andre Luis .
PACIFIC JOURNAL OF MATHEMATICS, 2018, 297 (01) :87-100
[10]  
Galego EM, 2018, MONATSH MATH, V186, P37, DOI 10.1007/s00605-016-1014-x