Weighted inequalities for a maximal function on the real line

被引:2
作者
Bernardis, AL
Martín-Reyes, FJ
机构
[1] INTEC, PEMA, RA-3000 Santa Fe, Argentina
[2] Univ Malaga, Fac Ciencias, Dpto Anal Matemat, Malaga 29071, Spain
关键词
D O I
10.1017/S0308210500000871
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the maximal operator defined on the real line by M(alpha)f(x) = sup(R >0) 1/(2R)(1+alpha) f(R < \x-y\< 2R) \f(y)\(\x-y\ - R)(alpha) dy, -1 < alpha <0, which is related to the Cesaro convergence of the singular integrals. We characterize the weights w for which M-alpha is of weak type, strong type and restricted weak type (p, p) with respect to the measure w(x) dx.
引用
收藏
页码:267 / 277
页数:11
相关论文
共 5 条
[1]   Singular integrals in the Cesaro sense [J].
Bernardis, AL ;
Martín-Reyes, FJ .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2000, 6 (02) :143-152
[2]   THE HARDY-LITTLEWOOD MAXIMAL-FUNCTION ON L(P,Q) SPACES WITH WEIGHTS [J].
CHUNG, HM ;
HUNT, RA ;
KURTZ, DS .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1982, 31 (01) :109-120
[3]  
DeFrancia J.L.R., 1985, WEIGHTED NORM INEQUA
[4]  
JOURKAT W, 1979, T AM MATH SOC, V252, P49
[5]  
STROMBERG JO, 1989, LECT NOTES MATH, V1381