Influence of polymer matrix on the sensing capabilities of carbon nanotube polymeric thermistors

被引:21
作者
Balam, A. [1 ]
Cen-Puc, M. [1 ]
May-Pat, A. [1 ]
Abot, J. L. [2 ]
Aviles, F. [1 ]
机构
[1] Ctr Invest Cient Yucatan AC, Unidad Mat, Calle 43 130 X 32y 34, Merida 97205, Yucatan, Mexico
[2] Catholic Univ Amer, Dept Mech Engn, 620 Michigan Ave, Washington, DC 20064 USA
关键词
thermoresistivity; temperature sensing; polymer nanocomposites; carbon nanotubes; ELECTRICAL-CONDUCTIVITY; STRUCTURAL COMPOSITES; DISPERSION; COEFFICIENT; RESISTANCE; BEHAVIOR; WALL;
D O I
10.1088/1361-665X/ab4e08
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The thermoresistive response of multiwall carbon nanotube (MWCNT)/polymer composites is investigated, focusing on the role of the polymer matrix. This is achieved by experimentally investigating the cyclic thermoresistive response of MWCNT composites with three types of thermo-mechanically dissimilar matrices, viz. a thermosetting (vinyl ester) resin, an engineering thermoplastic (polysulfone), and a commodity thermoplastic (polypropylene). Thermoresistive characterization covered cyclic heating and cooling below (25 degrees C to -30 degrees C) and above (25 degrees C to 100 degrees C) room temperature. A strong influence of the polymer matrix was found, including different linearity in the response, thermoresistive sensitivity, and hysteresis, depending on the thermo-mechanical properties of the polymer. Polypropylene nanocomposites showed the highest sensitivity and overall lower hysteretic parameters, ascribed to its high coefficient of thermal expansion, low elastic modulus and low glass transition temperature. Polypropylene and polysulfone nanocomposites showed high fidelity in their implementation as thermistors, with readings close to those of a commercial thermistor.
引用
收藏
页数:13
相关论文
共 43 条
[1]   A review and analysis of electrical percolation in carbon nanotube polymer composites [J].
Bauhofer, Wolfgang ;
Kovacs, Josef Z. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2009, 69 (10) :1486-1498
[2]   Strain sensing capabilities of a piezoresistive MWCNT-polysulfone film [J].
Bautista-Quijano, J. R. ;
Aviles, F. ;
Aguilar, J. O. ;
Tapia, A. .
SENSORS AND ACTUATORS A-PHYSICAL, 2010, 159 (02) :135-140
[3]  
Brandrup J., 1999, POLYM HDB, V89
[4]   Factors affecting the dispersion of MWCNTs in electrically conducting SEBS nanocomposites [J].
Calisi, Nicola ;
Giuliani, Alessio ;
Alderighi, Michele ;
Schnorr, Jan M. ;
Swager, Timothy M. ;
Di Francesco, Fabio ;
Pucci, Andrea .
EUROPEAN POLYMER JOURNAL, 2013, 49 (06) :1471-1478
[5]   Experimental investigation of the thermoresistive response of multiwall carbon nanotube/polysulfone composites under heating-cooling cycles [J].
Cen-Puc, M. ;
Pool, G. ;
Oliva-Aviles, A. I. ;
May-Pat, A. ;
Aviles, F. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2017, 151 :34-43
[6]   Thermoresistive mechanisms of carbon nanotube/polymer composites [J].
Cen-Puc, M. ;
Oliva-Aviles, A. I. ;
Aviles, F. .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2018, 95 :41-50
[7]  
Cen-Puc M., 2016, J. appl. res. technol, V14, P268, DOI 10.1016/j.jart.2016.06.004
[8]   DC electrical conductivity of carbon black polymer composites at low temperatures [J].
Costa, L. C. ;
Henry, F. .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2011, 357 (07) :1741-1744
[9]   Carbon Nanotubes: Present and Future Commercial Applications [J].
De Volder, Michael F. L. ;
Tawfick, Sameh H. ;
Baughman, Ray H. ;
Hart, A. John .
SCIENCE, 2013, 339 (6119) :535-539
[10]   Coupled electrical-thermal-pyrolytic analysis of carbon fiber/epoxy composites subjected to lightning strike [J].
Dong, Qi ;
Guo, Yunli ;
Sun, Xiaochen ;
Jia, Yuxi .
POLYMER, 2015, 56 :385-394