Atrial Fibrillation Classification from a Short Single Lead ECG Recording Using Hierarchical Classifier

被引:13
|
作者
Coppola, Erin E. [1 ]
Gyawali, Prashnna K. [1 ]
Vanjara, Nihar [1 ]
Giaime, Daniel [1 ]
Wang, Linwei [1 ]
机构
[1] Rochester Inst Technol, Rochester, NY 14623 USA
来源
2017 COMPUTING IN CARDIOLOGY (CINC) | 2017年 / 44卷
关键词
RATE-INDEPENDENT DETECTION;
D O I
10.22489/CinC.2017.354-425
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Atrial fibrillation (AF), one of the most common cardiac arrhythmias, can be diagnosed using electrocardiography. We present a data-driven model to automatically detect the occurrence of atrial fibrillation on a single lead electrocardiogram (ECG). Our model incorporates a wide range of features including heart rate variability in the time and frequency domain, spectral power analysis and statistical modeling of atrial activity. We use an over-sampling strategy to balance the dataset across different categories. We design a hierarchical classification model to predict an ECG signal as either AF, normal, noisy or an alternative rhythm. The best performance was achieved with a hierarchical bagged ensemble classifier, with an average F1 score of 0.7855 over all samples.
引用
收藏
页数:4
相关论文
empty
未找到相关数据