Invariant Gibbs dynamics for the dynamical sine-Gordon model

被引:18
作者
Oh, Tadahiro [1 ,2 ]
Robert, Tristan [3 ,4 ]
Sosoe, Philippe [5 ]
Wang, Yuzhao [6 ]
机构
[1] Univ Edinburgh, Sch Math, James Clerk Maxwell Bldg,Kings Bldg, Edinburgh EH9 3FD, Midlothian, Scotland
[2] Maxwell Inst Math Sci, James Clerk Maxwell Bldg,Kings Bldg, Edinburgh EH9 3FD, Midlothian, Scotland
[3] Univ Bielefeld, Fak Math, Postfach 10 01 31, D-33501 Bielefeld, Germany
[4] Univ Rennes, CNRS, IRMAR, UMR 6625, F-35000 Rennes, France
[5] Cornell Univ, Dept Math, 584 Malott Hall, Ithaca, NY 14853 USA
[6] Univ Birmingham, Sch Math, Watson Bldg, Edgbaston Birmingham B15 2TT, W Midlands, England
基金
欧洲研究理事会;
关键词
Stochastic sine-Gordon equation; dynamical sine-Gordon model; renormalization; white noise; Gibbs measure; Gaussian multiplicative chaos; EQUATION;
D O I
10.1017/prm.2020.68
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, we study the hyperbolic stochastic damped sine-Gordon equation (SdSG), with a parameter beta(2) > 0, and its associated Gibbs dynamics on the two-dimensional torus. After introducing a suitable renormalization, we first construct the Gibbs measure in the range 0 < beta(2) < 4 pi via the variational approach due to Barashkov-Gubinelli (2018). We then prove almost sure global well-posedness and invariance of the Gibbs measure under the hyperbolic SdSG dynamics in the range 0 < beta(2) < 2 pi. Our construction of the Gibbs measure also yields almost sure global well-posedness and invariance of the Gibbs measure for the parabolic sine-Gordon model in the range 0 < beta(2) < 4 pi.
引用
收藏
页码:1450 / 1466
页数:17
相关论文
共 40 条
[1]  
Barashkov N., ARXIV180510814MATHPR
[2]  
Barone A., 1971, Rivista del Nuovo Cimento, V1, P227, DOI 10.1007/BF02820622
[3]  
Benyi A, 2019, Wiley Series in Probability and Mathematical Statistics. A Wiley-Interscience Publication, P1
[4]   Invariant measures for the 2D-defocusing nonlinear Schrodinger equation [J].
Bourgain, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 176 (02) :421-445
[5]   PERIODIC NONLINEAR SCHRODINGER-EQUATION AND INVARIANT-MEASURES [J].
BOURGAIN, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 166 (01) :1-26
[6]  
Chandra A., ARXIV180802594MATHPR
[7]  
Da Prato G, 2003, ANN PROBAB, V31, P1900
[8]  
DaPrato G., 2014, ENCY MATH ITS APPL, V152
[9]   AN INVARIANT MEASURE FOR THE EQUATION UTT-UXX+U3=0 [J].
FRIEDLANDER, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1985, 98 (01) :1-16
[10]   CLASSICAL AND QUANTUM STATISTICAL-MECHANICS IN ONE AND 2 DIMENSIONS - 2-COMPONENT YUKAWA - AND COULOMB SYSTEMS [J].
FROHLICH, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 47 (03) :233-268