Real analytic curves in Frechet spaces and their duals

被引:32
作者
Bonet, J [1 ]
Domanski, P
机构
[1] Univ Politecn Valencia, Dept Matemat Aplicada, ETS Arquitectura, E-46071 Valencia, Spain
[2] Adam Mickiewicz Univ Poznan, Fac Math & Comp Sci, PL-60769 Poznan, Poland
来源
MONATSHEFTE FUR MATHEMATIK | 1998年 / 126卷 / 01期
关键词
space of real analytic functions; vector valued real analytic functions; Frechet space; LB-space; tensor products; germs of analytic functions; surjectivity of convolution operators; first derived functor of the functor of projective limit; parameter dependence of solutions;
D O I
10.1007/BF01312453
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The following results are presented: 1) a characterization through the Liouville property of those Stein manifolds U such that every germ of holomorphic functions on R x U can be developed locally as a vector-valued Taylor series in the first variable with values in H(U); 2) if T(mu) is a surjective convolution operator on the space of scalar-valued real analytic functions, one can find a solution u of the equation T(mu)u = f which depends holomorphically on the parameter z is an element of C whenever f depends in the same manner. These results are obtained as an application of a thorough study of vector-valued real analytic maps by means of the modern functional analytic tools. In particular, we give a tensor product representation and a characterization of those Frechet spaces or LB-spaces E for which E-valued real analytic functions defined via composition with functionals and via suitably convergent Taylor series are the same.
引用
收藏
页码:13 / 36
页数:24
相关论文
共 50 条
  • [1] [Anonymous], 1953, J REINE ANGEW MATH, DOI DOI 10.1515/CRLL.1953.192.35
  • [2] Bierstedt K.D., 1988, Functional Analysis and its Applications, P35
  • [3] Bierstedt K.D., 1982, North-Holland Math. Stud., V71, P27
  • [4] BIERSTEDT KD, 1989, NATO ADV SCI I C-MAT, V287, P195
  • [5] A PROJECTIVE DESCRIPTION OF WEIGHTED INDUCTIVE LIMITS
    BIERSTEDT, KD
    MEISE, R
    SUMMERS, WH
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 272 (01) : 107 - 160
  • [6] ANALYTIC FUNCTIONS IN TOPOLOGICAL VECTOR SPACES
    BOCHNAK, J
    SICIAK, J
    [J]. STUDIA MATHEMATICA, 1971, 39 (01) : 77 - &
  • [7] Braun R. W., 1996, FUNCTIONAL ANAL, P69
  • [8] Braun RW, 1997, MICH MATH J, V44, P149
  • [9] BRAUN RW, 1994, MATH NACHR, V168, P19
  • [10] BRAUN RW, 1989, NATO ADV SCI I C-MAT, V287, P29