Relative topological properties and relative topological spaces

被引:44
作者
Arhangelskii, AV [1 ]
机构
[1] MOSCOW MV LOMONOSOV STATE UNIV,MECH & MATH FAC,CHAIR GEN TOPOL & GEOMETRY,MOSCOW 119899,RUSSIA
关键词
compactness of Y in X; normality of Y in X; relative topological property; realnormality of Y in X;
D O I
10.1016/0166-8641(95)00086-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This is one of the first surveys on relative topological properties. The emphasis is on relative separation axioms and on relative properties of compactness type. in particular, many relative versions of normality are discussed. Connections between relative compactness type properties and relative separation properties are scrutinized. Many new results and open problems are brought to light.
引用
收藏
页码:87 / 99
页数:13
相关论文
共 18 条
[1]  
Arhangelskii A. V., 1995, COMMENT MATH U CAROL, V36, P305
[2]  
Arhangelskii A.V, 1989, GEN TOPOLOGY SPACES, P3
[3]  
ARHANGELSKII AV, 1996, QUESTIONS ANSWERS GE, V14
[4]  
ARHANGELSKII AV, 1996, COMM MATH U CAROLIN, V37
[5]  
ARHANGELSKII AV, 1989, MOSCOW U MECH BULL, V44, P67
[6]  
ARHANGELSKII AV, 1992, TRUDY MAT I RAN, V193, P28
[7]  
ARHANGELSKII AV, 1994, QUESTIONS ANSWERS GE, V12
[8]  
ARHANGELSKII AV, 1995, MOSCOW U MECH BULL, V50, P28
[9]  
CHIGOGIDZE A, 1985, GEN TOPOLOGY, P67
[10]   AN EXAMPLE CONCERNING THE PROPERTY OF A SPACE BEING LINDELOF IN ANOTHER [J].
DOW, A ;
VERMEER, J .
TOPOLOGY AND ITS APPLICATIONS, 1993, 51 (03) :255-259