Phase image correlation spectroscopy for detecting microfluidic dynamics

被引:5
作者
Yu, Lan [1 ]
Wang, Yu [1 ]
Wang, Yang [1 ]
Zhuo, Kequn [1 ]
Ma, Ying [1 ]
Liu, Min [1 ]
Zheng, Juanjuan [1 ,2 ]
Li, Jianlang [1 ]
Li, Junhua [3 ]
Gao, Peng [1 ]
机构
[1] Xidian Univ, Sch Phys & Optoelect Engn, Xian 710071, Peoples R China
[2] Chinese Acad Sci, Xian Inst Opt & Precis Mech, State Key Lab Transient Opt & Photon, Xian 710119, Peoples R China
[3] Nanchang Hangkong Univ, Key Lab Jiangxi Prov Image Proc & Pattern Recogni, Nanchang 330063, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
FLUORESCENCE CORRELATION SPECTROSCOPY; SINGLE-PARTICLE TRACKING; VELOCIMETRY; MICROSCOPY; DIFFUSION; FLOW;
D O I
10.1364/AO.458026
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
It is essential to quantify the physical properties and the dynamics of flowing particles in many fields, especially in microfluidic-related applications. We propose phase image correlation spectroscopy (PICS) as a versatile tool to quantify the concentration, hydro-diameter, and flow velocity of unlabeled particles by correlating the pixels of the phase images taken on flowing particles in a microfluidic device. Compared with conventional image correlation spectroscopy, PICS is minimally invasive, relatively simple, and more efficient, since it utilizes the intrinsic phase of the particles to provide a contrast instead of fluorescent labeling. We demonstrate the feasibility of PICS by measuring flowing polymethylmethacrylate (PMMA) microspheres and yeast in a microfluidic device. We can envisage that PICS will become an essential inspection tool in biomedicine and industry. (C) 2022 Optica Publishing Group
引用
收藏
页码:5944 / 5950
页数:7
相关论文
共 38 条
[1]  
Adrian R. J., 2011, Particle image velocimetry, V30
[2]   Spatio-temporal image correlation spectroscopy and super-resolution microscopy to quantify molecular dynamics in T cells [J].
Ashdown, George W. ;
Owen, Dylan M. .
METHODS, 2018, 140 :112-118
[3]   Super-resolution and optical sectioning integrated structured illumination microscopy [J].
Dan, Dan ;
Gao, Peng ;
Zhao, Tianyu ;
Dang, Shipei ;
Qian, Jia ;
Lei, Ming ;
Min, Junwei ;
Yu, Xianghua ;
Yao, Baoli .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2021, 54 (07)
[4]   Measuring ligand-cell surface receptor affinities with axial line-scanning fluorescence correlation spectroscopy [J].
Eckert, Antonia Franziska ;
Gao, Peng ;
Wesslowski, Janine ;
Wang, Xianxian ;
Rath, Jasmijn ;
Nienhaus, Karin ;
Davidson, Gary ;
Nienhaus, Gerd Ulrich .
ELIFE, 2020, 9 :1-92
[5]   Direct observation of the nanoscale dynamics of membrane lipids in a living cell [J].
Eggeling, Christian ;
Ringemann, Christian ;
Medda, Rebecca ;
Schwarzmann, Guenter ;
Sandhoff, Konrad ;
Polyakova, Svetlana ;
Belov, Vladimir N. ;
Hein, Birka ;
von Middendorff, Claas ;
Schoenle, Andreas ;
Hell, Stefan W. .
NATURE, 2009, 457 (7233) :1159-U121
[6]   FLUORESCENCE CORRELATION SPECTROSCOPY .1. CONCEPTUAL BASIS AND THEORY [J].
ELSON, EL ;
MAGDE, D .
BIOPOLYMERS, 1974, 13 (01) :1-27
[7]   Fluorescence Correlation Spectroscopy: Past, Present, Future [J].
Elson, Elliot L. .
BIOPHYSICAL JOURNAL, 2011, 101 (12) :2855-2870
[8]   Resolution enhancement of digital holographic microscopy via synthetic aperture: a review [J].
Gao, Peng ;
Yuan, Caojin .
LIGHT-ADVANCED MANUFACTURING, 2022, 3 (01) :105-120
[9]  
Gao P, 2017, NAT PHOTONICS, V11, P163, DOI [10.1038/nphoton.2016.279, 10.1038/NPHOTON.2016.279]
[10]   Particle image velocimetry: A review [J].
Grant, I .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 1997, 211 (01) :55-76