Lower bounds for Lovasz-Schrijver systems and beyond follow from multiparty communication complexity

被引:43
作者
Beame, Paul [1 ]
Pitassi, Toniann
Segerlind, Nathan
机构
[1] Univ Washington, Seattle, WA 98195 USA
[2] Univ Toronto, Dept Comp Sci, Toronto, ON M5S 1A4, Canada
[3] Portland State Univ, Dept Comp Sci, Portland, OR 97207 USA
关键词
propositional proof complexity; zero-one programming; communication complexity; lower bounds;
D O I
10.1137/060654645
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove that an omega (log(4) n) lower bound for the three- party number- on- the- forehead ( NOF) communication complexity of the set- disjointness function implies an n.( 1) size lower bound for treelike Lovasz - Schrijver systems that refute unsatisfiable formulas in conjunctive normal form (CNFs). More generally, we prove that an n(Omega(1)) lower bound for the ( k + 1)- party NOF communication complexity of set disjointness implies a 2(n Omega(1)) size lower bound for all treelike proof systems whose formulas are degree k polynomial inequalities.
引用
收藏
页码:845 / 869
页数:25
相关论文
共 28 条
[1]  
[Anonymous], 1997, COMMUNICATION COMPLE
[2]  
ARORA S, 2006, THEORY COMPUTING, V2, P19
[3]  
BEAME P, 2001, PROPOSITIONAL PROOF, P42
[4]   A strong direct product theorem for corruption and the multiparty communication complexity of disjointness [J].
Beame, Paul ;
Pitassi, Toniann ;
Segerlind, Nathan ;
Wigderson, Avi .
COMPUTATIONAL COMPLEXITY, 2006, 15 (04) :391-432
[5]   On the Chvatal rank of polytopes in the 0/1 cube [J].
Bockmayr, A ;
Eisenbrand, F ;
Hartmann, M ;
Schulz, AS .
DISCRETE APPLIED MATHEMATICS, 1999, 98 (1-2) :21-27
[6]   Lower bounds for cutting planes proofs with small coefficients [J].
Bonet, M ;
Pitassi, T ;
Raz, R .
JOURNAL OF SYMBOLIC LOGIC, 1997, 62 (03) :708-728
[7]   On interpolation and automatization for Frege systems [J].
Bonet, ML ;
Pitassi, T ;
Raz, R .
SIAM JOURNAL ON COMPUTING, 2000, 29 (06) :1939-1967
[8]  
Buresh-Oppenheim Joshua, 2006, Theory of Computing, V2, P65
[9]  
Chandra A. K., 1983, Proc. 15th Annual ACM Symposium on the Theory of Computing, P94, DOI [10.1145/800061.808737, DOI 10.1145/800061.808737]
[10]  
Chvatal V., 1973, Discrete Mathematics, V4, P305, DOI 10.1016/0012-365X(73)90167-2