STOCHASTIC APPROXIMATION FINITE ELEMENT METHOD: ANALYTICAL FORMULAS FOR MULTIDIMENSIONAL DIFFUSION PROCESS

被引:4
作者
Bompis, R. [1 ]
Gobet, E. [1 ]
机构
[1] Ecole Polytech, CMAP, F-91128 Palaiseau, France
关键词
weak approximation; diffusion processes; Malliavin calculus; finite elements; DIFFERENTIAL-EQUATIONS; CONVERGENCE;
D O I
10.1137/130928431
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive an analytical weak approximation of a multidimensional diffusion process as coefficients are small or time is small. Our methodology combines the use of Gaussian proxies to approximate the law of the diffusion and a finite element interpolation of the terminal function applied to the diffusion. We call this the stochastic approximation finite element (SAFE) method. We provide error bounds of our global approximation depending on the diffusion process coefficients, the time horizon, and the regularity of the terminal function. Then we give estimates of the computational cost of our algorithm. This shows an improved efficiency compared to Monte-Carlo methods in small and medium dimensions (smaller than 10), which is confirmed by numerical experiments.
引用
收藏
页码:3140 / 3164
页数:25
相关论文
共 23 条
[1]  
Bain A, 2009, STOCH MOD APPL PROBA, V60, P1, DOI 10.1007/978-0-387-76896-0_1
[2]   The law of the Euler scheme for stochastic differential equations .1. Convergence rate of the distribution function [J].
Bally, V ;
Talay, D .
PROBABILITY THEORY AND RELATED FIELDS, 1996, 104 (01) :43-60
[3]   A quantization algorithm for solving multidimensional discrete-time optimal stopping problems [J].
Bally, V ;
Pagés, G .
BERNOULLI, 2003, 9 (06) :1003-1049
[4]  
Bompis R., 2013, RECENT DEV COMPUTATI, P159
[5]  
Bompis R., 2013, THESIS ECOLE POLYTEC
[6]  
Brenner S.C., 2008, MATH THEORY FINITE E, V15
[7]  
Bungartz HJ, 2004, ACT NUMERIC, V13, P147, DOI 10.1017/S0962492904000182
[8]   EFFICIENT MONTE CARLO SIMULATION OF SECURITY PRICES [J].
Duffie, Darrell ;
Glynn, Peter .
ANNALS OF APPLIED PROBABILITY, 1995, 5 (04) :897-905
[9]  
Fouque J.P., 2011, MULTISCALE STOCHASTI
[10]  
Glasserman P., 2003, MONTE CARLO METHODS