A renormalized index theorem for some complete asymptotically regular metrics: The Gauss-Bonnet theorem

被引:31
作者
Albin, Pierre [1 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
heat kernel; index theorem; Gauss-Bonnet; renormalized trace; HODGE COHOMOLOGY; OPEN MANIFOLDS; CURVATURE; RESOLVENT; SPECTRUM;
D O I
10.1016/j.aim.2006.11.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Gauss-Bonnet theorem as a renormalized index theorem for edge metrics. These metrics include the Poincare-Einstein metrics of the AdS/CFT correspondence and the asymptotically cylindrical metrics of the Atiyah-Patodi-Singer index theorem. We use renormalization to make sense of the curvature integral and the dimensions of the L-2-cohomology spaces as well as to carry out the heat equation proof of the index theorem. For conformally compact metrics even mod x(m), we show that the finite time supertrace of the heat kernel on conformally compact manifolds renormalizes independently of the choice of special boundary defining function. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 52
页数:52
相关论文
共 34 条
[1]  
ALBIN P, UNPUB
[2]  
ALBIN P, 2005, RENORMALIZING CURVAT
[3]  
Anderson MT, 2001, MATH RES LETT, V8, P171
[4]  
[Anonymous], ASIAN J MATH
[5]   SPECTRAL ASYMMETRY AND RIEMANNIAN GEOMETRY .1. [J].
ATIYAH, MF ;
PATODI, VK ;
SINGER, IM .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1975, 77 (JAN) :43-69
[6]  
Besse A.L., 1987, ERGEB MATH GRENZGEB, V10
[7]   THE SPECTRUM OF THE DIRAC OPERATOR ON THE HYPERBOLIC SPACE [J].
BUNKE, U .
MATHEMATISCHE NACHRICHTEN, 1991, 153 :179-190
[8]   L2-cohomology of manifolds with flat ends [J].
Carron, C .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2003, 13 (02) :366-395
[9]  
Carron G, 2004, ANN SCUOLA NORM-SCI, V3, P705
[10]  
Carron G, 2001, J REINE ANGEW MATH, V541, P81