Some results on the extended beta and extended hypergeometric functions

被引:55
作者
Luo, Min-Jie [1 ]
Milovanovic, Gradimir V. [2 ]
Agarwal, Praveen [3 ]
机构
[1] E China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
[2] Serbian Acad Arts & Sci, Math Inst, Beograd 11000, Serbia
[3] Anand Int Coll Engn, Dept Math, Jaipur 303012, Rajasthan, India
关键词
Extended beta function; Extended Gauss hypergeometric function; Extended generalized hypergeometric function; Fractional integral; H-function; Laguerre polynomial; GENERATING RELATIONS; EXTENSION; OPERATORS;
D O I
10.1016/j.amc.2014.09.110
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to present a systematic study of some extended special functions like B-b,rho,lambda((alpha, beta)) (x, y), F-2(1)(alpha,beta;rho,lambda) [z;b] and F-p(q)(alpha,beta,rho,lambda). We obtain various properties of these extended functions and establish their some connections with the Laguerre polynomial and Fox's H-function. Furthermore, we also establish the extended Riemann-Liouville type fractional integral operator and extended Kober type fractional integral operators. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:631 / 651
页数:21
相关论文
共 33 条
[1]  
Agarwal P., 2014, SPECIAL FUNCTIONS, V8, P2315
[2]  
Amdeberhan T., 2012, SPECIAL FUNCTIONS, V29, P103
[3]  
Andrews George E, 1999, Encyclopedia of Mathematics and its Applications, V71, DOI DOI 10.1017/CBO9781107325937
[4]  
Andrews L.C., 1985, SPECIAL FUNCTIONS
[5]  
[Anonymous], THEORY APPL
[6]  
[Anonymous], 1950, U POLITEC TORINO REN
[7]   On Generalized Fractional Integral Operators and the Generalized Gauss Hypergeometric Functions [J].
Baleanu, Dumitru ;
Agarwal, Praveen .
ABSTRACT AND APPLIED ANALYSIS, 2014,
[8]  
Brychkov Yu. A., 2008, HANDBOOK OF SPECIAL
[9]   A direct approach to the Mellin transform [J].
Butzer, PL ;
Jansche, S .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1997, 3 (04) :325-376
[10]  
Chaudhry M.A., 2001, On a Class of Incomplete Gamma Functions with Applications