Analysis of a mixed finite element method for the Reissner-Mindlin plate problems

被引:50
作者
Lovadina, C [1 ]
机构
[1] Univ Trento, Dipartimento Ingn Meccan & Strutturale, Trento, Italy
关键词
D O I
10.1016/S0045-7825(98)00003-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An analysis of a triangular mixed finite element method, proposed by Taylor and Auricchio (cf. [13]) is presented. The method is based on a linked interpolation between deflections and rotations in order to avoid the locking phenomenon (cf. [15]). The analysis shows that the approximated deflections and rotations are first order convergent to the exact solution, uniformly in the thickness. (C) 1998 Elsevier Science S.A. All rights reserved.
引用
收藏
页码:71 / 85
页数:15
相关论文
共 15 条
[1]  
Arnold D. N., 1991, Matematica Aplicada e Computacional, V10, P77
[2]   A UNIFORMLY ACCURATE FINITE-ELEMENT METHOD FOR THE REISSNER-MINDLIN PLATE [J].
ARNOLD, DN ;
FALK, RS .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (06) :1276-1290
[3]  
ARNOLD DN, 1993, BOUND VALUE PROBL, P287
[4]  
BATHE KJ, 1995, FINITE ELEMENT PROCE
[5]  
Brezzi F., 1991, Mathematical Models & Methods in Applied Sciences, V1, P125, DOI 10.1142/S0218202591000083
[6]  
Brezzi F., 2012, MIXED HYBRID FINITE, V15
[7]  
CHAPELLE D, IN PRESS OPTIMAL LOW
[8]  
CIARLET P. G., 1978, The Finite Element Method for Elliptic Problems
[9]  
DURAN RG, IN PRESS MATH MODELS
[10]  
Hughes T. J. R., 2012, The finite element method: linear static and dynamic finite element analysis