ADAPTIVE MULTILEVEL INEXACT SQP METHODS FOR PDE-CONSTRAINED OPTIMIZATION

被引:40
作者
Ziems, J. Carsten [1 ]
Ulbrich, Stefan [1 ]
机构
[1] Tech Univ Darmstadt, Dept Math, D-64293 Darmstadt, Germany
关键词
optimal control; adaptive mesh refinement; partial differential equation constraints; finite elements; a posteriori error estimator; trust-region methods; inexact linear system solvers; FINITE-ELEMENT METHODS; POSTERIORI ERROR ESTIMATION; MULTIGRID OPTIMIZATION;
D O I
10.1137/080743160
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a class of inexact adaptive multilevel trust-region SQP methods for the efficient solution of optimization problems governed by nonlinear PDEs. The algorithm starts with a coarse discretization of the underlying optimization problem and provides during the optimization process (1) implementable criteria for an adaptive refinement strategy of the current discretization based on local error estimators and (2) implementable accuracy requirements for iterative solvers of the linearized PDE and adjoint PDE on the current grid. We prove global convergence to a stationary point of the infinite-dimensional problem. Moreover, we illustrate how the adaptive refinement strategy of the algorithm can be implemented by using existing reliable a posteriori error estimators for the state and the adjoint equations. Numerical results are presented.
引用
收藏
页码:1 / 40
页数:40
相关论文
共 34 条
[1]   Each averaging technique yields reliable a posteriori error control in FEM on unstructured grids. Part II: Higher order FEM [J].
Bartels, S ;
Carstensen, C .
MATHEMATICS OF COMPUTATION, 2002, 71 (239) :971-994
[2]  
Becker R, 2001, ACT NUMERIC, V10, P1, DOI 10.1017/S0962492901000010
[3]   Adaptive finite element methods for optimal control of partial differential equations: Basic concept [J].
Becker, R ;
Kapp, H ;
Rannacher, R .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 39 (01) :113-132
[4]   A posteriori error estimation and adaptivity for elliptic optimal control problems with state constraints [J].
Benedix, Olaf ;
Vexler, Boris .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2009, 44 (01) :3-25
[5]   Parallel Lagrange-Newton-Krylov-Schur methods for PDE-constrained optimization. Part I: The Krylov-Schur solver [J].
Biros, G ;
Ghattas, O .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 27 (02) :687-713
[6]   A multigrid scheme for elliptic constrained optimal control problems [J].
Borzì, A ;
Kunisch, K .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2005, 31 (03) :309-333
[7]   Smoothers for control- and state-constrained optimal control problems [J].
Borzi, Alfio .
COMPUTING AND VISUALIZATION IN SCIENCE, 2008, 11 (01) :59-66
[8]   Convergence analysis of a conforming adaptive finite element method for an obstacle problem [J].
Braess, Dietrich ;
Carstensen, Carsten ;
Hoppe, Ronald H. W. .
NUMERISCHE MATHEMATIK, 2007, 107 (03) :455-471
[9]  
Brenner SC., 2004, ENCY COMPUTATIONAL M, V1, P73
[10]  
BYRD R, 1987, P 3 SIAM C OPT HOUST