Value function, relaxation, and transversality conditions in infinite horizon optimal control

被引:18
作者
Cannarsa, P. [1 ]
Frankowska, H. [2 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, Via Ric Sci 1, I-00133 Rome, Italy
[2] UPMC Univ Paris 06, Sorbonne Univ, Inst Math Jussieu Paris Rive Gauche, CNRS,UMR 7586, Case 247,4 Pl Jussieu, F-75252 Paris, France
关键词
Infinite horizon problem; Value function; Relaxation theorem; Sensitivity relation; Maximum principle; MAXIMUM PRINCIPLE;
D O I
10.1016/j.jmaa.2017.02.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the value function V : R+ x R-n -> R+ boolean OR {+infinity} of the infinite horizon problem in optimal control for a general not necessarily discounted running cost and provide sufficient conditions for its lower semicontinuity, continuity, and local Lipschitz regularity. Then we use the continuity of V(t,.) to prove a relaxation theorem and to write the first order necessary optimality conditions in the form of a, possibly abnormal, maximum principle whose transversality condition uses limiting/horizontal supergradients of V(0,.) at the initial point. When V(0,.) is merely lower semicontinuous, then for a dense subset of initial conditions we obtain a normal maximum principle augmented by sensitivity relations involving the Frechet subdifferentia1s of V(t,.). Finally, when V is locally Lipschitz, we prove a normal maximum principle together with sensitivity relations involving generalized gradients of V for arbitrary initial conditions. Such relations simplify drastically the investigation of the limiting behavior at infinity of the adjoint state. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:1188 / 1217
页数:30
相关论文
共 23 条
[1]  
[Anonymous], LECT NOTES EC MATH S
[2]  
[Anonymous], 2004, PROGR NONLINEAR DIFF
[3]   Maximum principle for infinite-horizon optimal control problems under weak regularity assumptions [J].
Aseev, S. M. ;
Veliov, V. M. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2015, 291 :S22-S39
[4]  
Aseev S. M., 2004, SIAM Journal on Control and Optimization, V43, P1094, DOI DOI 10.1137/S0363012903427518
[5]  
Aseev S.M., 2012, Dynamics of Continuous, Discrete and Impulsive Systems, Series B, V19, P43
[6]  
AUBIN J. P., 1990, Set-valued analysis, V2, DOI [10.1007/978-0-8176-4848-0, DOI 10.1007/978-0-8176-4848-0]
[7]   SHADOW PRICES AND DUALITY FOR A CLASS OF OPTIMAL-CONTROL PROBLEMS [J].
AUBIN, JP ;
CLARKE, FH .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1979, 17 (05) :567-586
[8]   Improved Sensitivity Relations in State Constrained Optimal Control [J].
Bettiol, Piernicola ;
Frankowska, Helene ;
Vinter, Richard B. .
APPLIED MATHEMATICS AND OPTIMIZATION, 2015, 71 (02) :353-377
[9]   SOME CHARACTERIZATIONS OF OPTIMAL TRAJECTORIES IN CONTROL-THEORY [J].
CANNARSA, P ;
FRANKOWSKA, H .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1991, 29 (06) :1322-1347
[10]   From pointwise to local regularity for solutions of Hamilton-Jacobi equations [J].
Cannarsa, P. ;
Frankowska, H. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2014, 49 (3-4) :1061-1074