Quantitative atomic resolution elemental mapping via absolute-scale energy dispersive X-ray spectroscopy

被引:47
作者
Chen, Z. [1 ]
Weyland, M. [2 ,3 ]
Sang, X. [4 ]
Xu, W. [4 ]
Dycus, J. H. [4 ]
LeBeau, J. M. [4 ]
D'Alfonso, A. J. [5 ]
Allen, L. J. [5 ]
Findlay, S. D. [1 ]
机构
[1] Monash Univ, Sch Phys & Astron, Clayton, Vic 3800, Australia
[2] Monash Univ, Monash Ctr Electron Microscopy, Clayton, Vic 3800, Australia
[3] Monash Univ, Dept Mat Sci & Engn, Clayton, Vic 3800, Australia
[4] North Carolina State Univ, Dept Mat Sci & Engn, Box 7907, Raleigh, NC 27695 USA
[5] Univ Melbourne, Sch Phys, Parkville, Vic 3010, Australia
基金
澳大利亚研究理事会; 美国国家科学基金会;
关键词
Scanning transmission electron microscopy (STEM); Energy dispersive X-ray (EDX) spectroscopy; Atomic-resolution mapping; Elemental quantification; ELECTRON; CONTRAST; PROBES;
D O I
10.1016/j.ultramic.2016.05.008
中图分类号
TH742 [显微镜];
学科分类号
摘要
Quantitative agreement on an absolute scale is demonstrated between experiment and simulation for two-dimensional, atomic-resolution elemental mapping via energy dispersive X-ray spectroscopy. This requires all experimental parameters to be carefully characterized. The agreement is good, but some discrepancies remain. The most likely contributing factors are identified and discussed. Previous predictions that increasing the probe forming aperture helps to suppress the channelling enhancement in the average signal are confirmed experimentally. It is emphasized that simple column-by-column analysis requires a choice of sample thickness that compromises between being thick enough to yield a good signal-to-noise ratio while being thin enough that the overwhelming majority of the EDX signal derives from the column on which the probe is placed, despite strong electron scattering effects. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:7 / 16
页数:10
相关论文
共 44 条
[1]   Modelling the inelastic scattering of fast electrons [J].
Allen, L. J. ;
D'Alfonso, A. J. ;
Findlay, S. D. .
ULTRAMICROSCOPY, 2015, 151 :11-22
[2]   Chemical mapping at atomic resolution using energy-dispersive x-ray spectroscopy [J].
Allen, Leslie J. ;
D'Alfonso, Adrian J. ;
Freitag, Bert ;
Klenov, Dmitri O. .
MRS BULLETIN, 2012, 37 (01) :47-52
[3]   Lattice-resolution contrast from a focused coherent electron probe. Part I [J].
Allen, LJ ;
Findlay, SD ;
Oxley, MP ;
Rossouw, CJ .
ULTRAMICROSCOPY, 2003, 96 (01) :47-63
[4]   A GENERAL CHARACTERISTIC FLUORESCENCE CORRECTION FOR THE QUANTITATIVE ELECTRON MICROBEAM ANALYSIS OF THICK SPECIMENS, THIN-FILMS AND PARTICLES [J].
ARMSTRONG, JT ;
BUSECK, PR .
X-RAY SPECTROMETRY, 1985, 14 (04) :172-182
[5]   Energy dispersive X-ray analysis on an absolute scale in scanning transmission electron microscopy [J].
Chen, Z. ;
D'Alfonso, A. J. ;
Weyland, M. ;
Taplin, D. J. ;
Allen, L. J. ;
Findlay, S. D. .
ULTRAMICROSCOPY, 2015, 157 :21-26
[6]   Emergent Chemical Mapping at Atomic-Column Resolution by Energy-Dispersive X-Ray Spectroscopy in an Aberration-Corrected Electron Microscope [J].
Chu, M. -W. ;
Liou, S. C. ;
Chang, C. -P. ;
Choa, F. -S. ;
Chen, C. H. .
PHYSICAL REVIEW LETTERS, 2010, 104 (19)
[7]   QUANTITATIVE-ANALYSIS OF THIN SPECIMENS [J].
CLIFF, G ;
LORIMER, GW .
JOURNAL OF MICROSCOPY-OXFORD, 1975, 103 (MAR) :203-207
[8]   Atomic-resolution chemical mapping using energy-dispersive x-ray spectroscopy [J].
D'Alfonso, A. J. ;
Freitag, B. ;
Klenov, D. ;
Allen, L. J. .
PHYSICAL REVIEW B, 2010, 81 (10)
[9]   Scattering of Å-scale electron probes in silicon [J].
Dwyer, C ;
Etheridge, J .
ULTRAMICROSCOPY, 2003, 96 (3-4) :343-360
[10]  
Dwyer C., 2013, APPL PHYS LETT, P100