Robust relevance vector regression with trimmed likelihood function

被引:13
作者
Yang, Biao [1 ]
Zhang, Zengke [1 ]
Sun, Zhengshun [1 ]
机构
[1] Tsinghua Univ, Dept Automat, Beijing 10084, Peoples R China
关键词
least trimmed square (LTS); relevance vector machine (RVM); robust regression;
D O I
10.1109/LSP.2007.898327
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This letter proposes a novel robust regression method called trimmed relevance vector regression (TRVR) that redefines the likelihood function as a trimmed likelihood function over a trimmed subset. A re-weighted strategy is introduced to find the robust trimmed subset that does not include outliers. Simultaneously, by maximizing the trimmed likelihood function with the relevance vector machine (RVM) framework, the weights of the regression model can be estimated. The experimental results have been presented to demonstrate that the proposed method is highly robust.
引用
收藏
页码:746 / 749
页数:4
相关论文
共 18 条
[1]   Recovering 3D human pose from monocular images [J].
Agarwal, A ;
Triggs, B .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2006, 28 (01) :44-58
[2]  
[Anonymous], 1987, ROBUST REGRESSION OU
[3]  
Boser B. E., 1992, Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, P144, DOI 10.1145/130385.130401
[4]   Least trimmed squares in nonlinear regression under dependence [J].
Cizek, Pavel .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2006, 136 (11) :3967-3988
[5]  
Faul AC, 2001, LECT NOTES COMPUT SC, V2130, P95
[6]   MULTIVARIATE ADAPTIVE REGRESSION SPLINES [J].
FRIEDMAN, JH .
ANNALS OF STATISTICS, 1991, 19 (01) :1-67
[7]  
Fujimaki R, 2005, LECT NOTES ARTIF INT, V3518, P785
[8]  
Liu F, 2006, LECT NOTES COMPUT SC, V4233, P880
[9]  
MacKay D. J., 1996, MODELS NEURAL NETWOR, VIII, P211, DOI DOI 10.1007/978-1-4612-0723-8_6
[10]  
MACKAY DJC, 1992, NEURAL COMPUT, V4, P415, DOI [10.1162/neco.1992.4.3.415, 10.1162/neco.1992.4.3.448]