Anionic nanoparticles enable the oral delivery of proteins by enhancing intestinal permeability

被引:229
作者
Lamson, Nicholas G. [1 ]
Berger, Adrian [1 ,2 ]
Fein, Katherine C. [1 ]
Whitehead, Kathryn A. [1 ,2 ]
机构
[1] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA
[2] Carnegie Mellon Univ, Dept Biomed Engn, Pittsburgh, PA 15213 USA
基金
美国国家卫生研究院;
关键词
CACO-2; CELLS; INSULIN; ABSORPTION; TRANSPORT; TIGHT; VIVO; PH; EPITHELIUM; EXENATIDE; OVERCOME;
D O I
10.1038/s41551-019-0465-5
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The oral delivery of bioactive peptides and proteins is prevented by the intestinal epithelial barrier, in which intercellular tight junction complexes block the uptake of macromolecules. Here we show that anionic nanoparticles induce tight junction relaxation, increasing intestinal permeability and enabling the oral delivery of proteins. This permeation-enhancing effect is a function of nanoparticle size and charge, with smaller (<= 200 nm) and more negative particles (such as silica) conferring enhanced permeability. In healthy mice, silica nanoparticles enabled the oral delivery of insulin and exenatide, with 10 U kg(-1) orally delivered insulin sustaining hypoglycaemia for a few hours longer than a 1 U kg(-1) dose of subcutaneously injected insulin. In healthy, hyperglycaemic and diabetic mice, the oral delivery of 10 U kg(-1) insulin led to a dose-adjusted bioactivity of, respectively, 35%, 29% and 23% that of the subcutaneous injection of 1 U kg(-1) insulin. The permeation-enhancing effect of the nanoparticles was reversible, non-toxic, and attributable to the binding to integrins on the surface of epithelial cells. Anionic nanoparticles increase intestinal permeability and enable the oral delivery of proteins, as shown with the delivery of insulin in healthy, hyperglycaemic, and diabetic mice.
引用
收藏
页码:84 / 96
页数:13
相关论文
共 60 条
[1]   Current status of selected oral peptide technologies in advanced preclinical development and in clinical trials [J].
Aguirre, T. A. S. ;
Teijeiro-Osorio, D. ;
Rosa, M. ;
Coulter, I. S. ;
Alonso, M. J. ;
Brayden, D. J. .
ADVANCED DRUG DELIVERY REVIEWS, 2016, 106 :223-241
[2]  
Arbit Ehud, 2017, J Diabetes Sci Technol, V11, P825, DOI 10.1177/1932296817691303
[3]   The adherent gastrointestinal mucus gel layer: thickness and physical state in vivo [J].
Atuma, C ;
Strugala, V ;
Allen, A ;
Holm, L .
AMERICAN JOURNAL OF PHYSIOLOGY-GASTROINTESTINAL AND LIVER PHYSIOLOGY, 2001, 280 (05) :G922-G929
[4]   Lipidoid Nanoparticles for siRNA Delivery to the Intestinal Epithelium: In Vitro Investigations in a Caco-2 Model [J].
Ball, Rebecca L. ;
Knapp, Christopher M. ;
Whitehead, Kathryn A. .
PLOS ONE, 2015, 10 (07)
[5]   Ionic liquids for oral insulin delivery [J].
Banerjee, Amrita ;
Ibsen, Kelly ;
Brown, Tyler ;
Chen, Renwei ;
Agatemor, Christian ;
Mitragotri, Samir .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (28) :7296-7301
[6]   Intestinal mucoadhesive devices for oral delivery of insulin [J].
Banerjee, Amrita ;
Lee, JooHee ;
Mitragotri, Samir .
BIOENGINEERING & TRANSLATIONAL MEDICINE, 2016, 1 (03) :338-346
[7]  
Beaulieu J. F., 1999, FRONT BIOSCI, V4, pD310
[8]   Intestinal permeability - a new target for disease prevention and therapy [J].
Bischoff, Stephan C. ;
Barbara, Giovanni ;
Buurman, Wim ;
Ockhuizen, Theo ;
Schulzke, Joerg-Dieter ;
Serino, Matteo ;
Tilg, Herbert ;
Watson, Alastair ;
Wells, Jerry M. .
BMC GASTROENTEROLOGY, 2014, 14
[9]   An Assessment of the Permeation Enhancer, 1-phenyl-piperazine (PPZ), on Paracellular Flux Across Rat Intestinal Mucosae in Ussing Chambers [J].
Bzik, V. A. ;
Brayden, D. J. .
PHARMACEUTICAL RESEARCH, 2016, 33 (10) :2506-2516
[10]   Evaluation of Biocoat® intestinal epithelium differentiation environment (3-day cultured Caco-2 cells) as an absorption screening model with improved productivity [J].
Chong, SH ;
Dando, SA ;
Morrison, RA .
PHARMACEUTICAL RESEARCH, 1997, 14 (12) :1835-1837