ROBUST SMOOTHED CANONICAL CORRELATION ANALYSIS FOR FUNCTIONAL DATA

被引:2
作者
Boente, Graciela [1 ,2 ]
Kudraszow, Nadia L. [3 ,4 ]
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, Ciudad Univ,Pabellon 2, RA-1428 Buenos Aires, DF, Argentina
[2] Consejo Nacl Invest Cient & Tecn, Inst Calculo, Ciudad Univ,Pabellon 2, RA-1428 Buenos Aires, DF, Argentina
[3] Univ Nacl La Plata, Dept Matemat, Fac Ciencias Exactas, Casilla Correo 172, RA-1900 La Plata, Argentina
[4] Consejo Nacl Invest Cient & Tecn, CMaLP, Casilla Correo 172, RA-1900 La Plata, Argentina
关键词
Canonical correlation analysis; functional data; robust estimation; smoothing techniques; ESTIMATORS; LOCATION;
D O I
10.5705/ss.202020.0084
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We provide robust estimators for the first canonical correlation and directions of random elements on Hilbert separable spaces by using robust association and scale measures, combined with basis expansions and/or penalizations as a regularization tool. Under regularity conditions, the resulting estimators are consistent. The finite-sample performance of our proposal is illustrated by means of a simulation study that shows that, as expected, the robust method outperforms the existing classical procedure when the data are contaminated. A real data example is also presented.
引用
收藏
页码:1269 / 1293
页数:25
相关论文
共 15 条
[1]   Robust Maximum Association Estimators [J].
Alfons, Andreas ;
Croux, Christophe ;
Filzmoser, Peter .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (517) :436-445
[2]   Robust sieve estimators for functional canonical correlation analysis [J].
Alvarez, Agustin ;
Boente, Graciela ;
Kudraszow, Nadia .
JOURNAL OF MULTIVARIATE ANALYSIS, 2019, 170 :46-62
[3]  
[Anonymous], 2005, FUNCTIONAL DATA ANAL
[4]   The delta method for analytic functions of random operators with application to functional data [J].
Cupidon, J. ;
Gilliam, D. S. ;
Eubank, R. ;
Ruymgaart, F. .
BERNOULLI, 2007, 13 (04) :1179-1194
[5]   Directional outlyingness for multivariate functional data [J].
Dai, Wenlin ;
Genton, Marc G. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2019, 131 :50-65
[6]   SOME RESULTS ON THE CLUSTER SET C([SN-AN]) AND THE LIL [J].
DEACOSTA, A ;
KUELBS, J .
ANNALS OF PROBABILITY, 1983, 11 (01) :102-122
[7]   ROBUST ESTIMATES, RESIDUALS, AND OUTLIER DETECTION WITH MULTIRESPONSE DATA [J].
GNANADESIKAN, R ;
KETTENRING, JR .
BIOMETRICS, 1972, 28 (01) :81-+
[8]   Methods of canonical analysis for functional data [J].
He, GZ ;
Müller, HG ;
Wang, JL .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2004, 122 (1-2) :141-159
[9]   Functional canonical analysis for square integrable stochastic processes [J].
He, GZ ;
Müller, HG ;
Wang, JL .
JOURNAL OF MULTIVARIATE ANALYSIS, 2003, 85 (01) :54-77
[10]   An adjusted boxplot for skewed distributions [J].
Hubert, M. ;
Vandervieren, E. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (12) :5186-5201