Compact spacelike surfaces in the 3-dimensional de Sitter space with non-degenerate second fundamental form

被引:9
作者
Aledo, JA
Romero, A
机构
[1] Univ Castilla La Mancha, Escuela Politecn Super Albacete, Dept Matemat, Albacete 02071, Spain
[2] Univ Granada, Dept Geometria & Topol, Granada 18071, Spain
关键词
de Sitter space; compact spacelike surface; second fundamental form; Gaussian curvature; totally umbilical round sphere;
D O I
10.1016/S0926-2245(03)00019-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish several sufficient conditions for a compact spacelike surface with non-degenerate second fundamental form in the 3-dimensional de Sitter space to be spherical. With this aim, we develop a formula for these surfaces which involves the mean and Gaussian curvatures of the first fundamental form and the Gaussian curvature of the second fundamental form. By means of that formula, we prove, for instance, that the totally umbilical round spheres are the only compact spacelike surfaces such that the second fundamental form is non-degenerate and has constant Gaussian curvature. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:97 / 111
页数:15
相关论文
共 14 条
[1]   Integral formulas for compact space-like hypersurfaces in de Sitter space:: Applications to the case of constant higher order mean curvature [J].
Aledo, JA ;
Alías, LJ ;
Romero, A .
JOURNAL OF GEOMETRY AND PHYSICS, 1999, 31 (2-3) :195-208
[2]   On the volume and the Gauss map image of spacelike hypersurfaces in de Sitter space [J].
Aledo, JA ;
Alías, LJ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (04) :1145-1151
[3]   Curvature properties of compact spacelike hypersurfaces in de Sitter space [J].
Aledo, JA ;
Alías, LJ .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2001, 14 (02) :137-149
[4]   On the Ricci curvature of compact spacelike hypersurfaces in de Sitter space [J].
Alías, LJ .
GEOMETRIAE DEDICATA, 1999, 77 (03) :297-304
[5]  
Cheng QM, 1998, MANUSCRIPTA MATH, V95, P499
[6]  
EISENHART LP, 1966, RIEMANNIAN GEOMETRY
[7]   CHARACTERISTIC PROPERTY OF SPHERE [J].
KOUFOGIORGOS, T ;
HASANIS, T .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 67 (02) :303-305
[8]   2 CHARACTERISTIC PROPERTIES OF SPHERE [J].
KOUTROUFIOTIS, D .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 44 (01) :176-178
[9]   Global rigidity theorems of hypersurfaces [J].
Li, HZ .
ARKIV FOR MATEMATIK, 1997, 35 (02) :327-351