NUMERICAL ANALYSIS OF A NONLINEARLY STABLE AND POSITIVE CONTROL VOLUME FINITE ELEMENT SCHEME FOR RICHARDS EQUATION WITH ANISOTROPY

被引:10
作者
Oulhaj, Ahmed Ait Hammou [1 ]
Cances, Clement [1 ]
Chainais-Hillairet, Claire [1 ]
机构
[1] Univ Lille, CNRS, UMR 8524, INRIA,Lab Paul Painleve, F-59000 Lille, France
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2018年 / 52卷 / 04期
关键词
Unsaturated porous media flow; Richards equation; nonlinear discretization; nonlinear stability; convergence analysis; HYDRAULIC CONDUCTIVITY; PARABOLIC EQUATION; FREE-ENERGY; DISCRETIZATION; CONVERGENCE; COMPACTNESS;
D O I
10.1051/m2an/2017012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend the nonlinear Control Volume Finite Element scheme of [C. Cances and C. Guichard, Math. Comput. 85 (2016) 549-580]. to the discretization of Richards equation. This scheme ensures the preservation of the physical bounds without any restriction on the mesh and on the anisotropy tensor. Moreover, it does not require the introduction of the so-called Kirchhoff transform in its definition. It also provides a control on the capillary energy. Based on this nonlinear stability property, we show that the scheme converges towards the unique solution to Richards equation when the discretization parameters tend to 0. Finally we present some numerical experiments to illustrate the behavior of the method.
引用
收藏
页码:1533 / 1567
页数:35
相关论文
共 39 条
[1]   An optimal Poincare inequality in L1 for convex domains [J].
Acosta, G ;
Durán, RG .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (01) :195-202
[2]  
ALT HW, 1983, MATH Z, V183, P311
[3]   A nonlinear time compactness result and applications to discretization of degenerate parabolic-elliptic PDEs [J].
Andreianov, Boris ;
Cances, Clement ;
Moussa, Ayman .
JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 273 (12) :3633-3670
[4]  
[Anonymous], POROSE MEDIEN METHOD
[5]  
[Anonymous], WATER RESOUR RES WRE
[6]  
[Anonymous], 1934, Ann. Sci. cole Norm. Sup
[7]  
[Anonymous], 1986, Annali di Matematica Pura ed Applicata, DOI [DOI 10.1007/BF01762360.MR916688, DOI 10.1007/BF01762360]
[8]  
[Anonymous], 2003, SOBOLEV SPACES
[9]  
[Anonymous], 1964, Trans. ASCE, DOI DOI 10.13031/2013.40684
[10]  
[Anonymous], 1985, NONLINEAR FUNCTIONAL