Photocatalytic degradation of dyes and organic contaminants in water using nanocrystalline anatase and rutile TiO2

被引:275
作者
Tayade, Rajesh J. [1 ]
Surolia, Praveen K. [1 ]
Kulkarni, Ramchandra G. [2 ]
Jasra, Raksh V. [1 ]
机构
[1] Cent Salt & Marine Chem Res Inst, Discipline Inorgan Mat & Catalysis, Bhavnagar 364002, Gujarat, India
[2] Saurashtra Univ, Dept Phys, Rajkot 360005, Gujarat, India
关键词
nanocrystalline TiO2; anatase; rutile; band-gap; hydrothermal method; photocatalysis; dyes; organic compounds;
D O I
10.1016/j.stam.2007.05.006
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nanocrystalline TiO2 was synthesized by controlled hydrolysis of titanium tetraisopropoxide. The anatase phase was converted to rutile phase by thermal treatment at 1023 K for 11 h. The catalysts were characterized by X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS), Fourier-transform infrared absorption spectrophotometry (FT-IR) and N-2 adsorption (BET) at 77 K. This study compare the photocatalytic activity of the anatase and rutile phases of nanocrystalline TiO2 for the degradation of acetophenone, nitrobenzene, methylene blue and malachite green present in aqueous solutions. The initial rate of degradation was calculated to compare the photocatalytic activity of anatase and rutile nanocrystalline TiO2 for the degradation of different substances under ultraviolet light irradiation. The higher photocatalytic activity was obtained in anatase phase TiO2 for the degradation of all substances as compared with rutile phase. It is concluded that the higher photocatalytic activity in anatase TiO2 is due to parameters like band-gap, number of hydroxyl groups, surface area and porosity of the catalyst. (c) 2007 NIMS and Elsevier Ltd. All rights reserved.
引用
收藏
页码:455 / 462
页数:8
相关论文
共 18 条
[1]   IR-analysis of H-bonded H2O on the pure TiO2 surface [J].
Bezrodna, T ;
Puchkovska, G ;
Shymanovska, V ;
Baran, J ;
Ratajczak, H .
JOURNAL OF MOLECULAR STRUCTURE, 2004, 700 (1-3) :175-181
[2]   The effect of calcination temperature on the crystallinity of TiO2 nanopowders [J].
Chen, YF ;
Lee, CY ;
Yeng, MY ;
Chiu, HT .
JOURNAL OF CRYSTAL GROWTH, 2003, 247 (3-4) :363-370
[3]  
Cullity B. D., ELEMENTS XRAY DIFFRA
[4]  
Fujishima A., 2000, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, V1, P1, DOI [10.1016/S1389-5567(00)00002-2, DOI 10.1016/S1389-5567(00)00002-2]
[5]   Room temperature synthesis of crystalline metal oxides [J].
Gopal, M ;
Chan, WJM ;
DeJonghe, LC .
JOURNAL OF MATERIALS SCIENCE, 1997, 32 (22) :6001-6008
[6]  
Gratzel M, 1988, Heterogeneous Photochemical Electron Transfer
[7]   ENVIRONMENTAL APPLICATIONS OF SEMICONDUCTOR PHOTOCATALYSIS [J].
HOFFMANN, MR ;
MARTIN, ST ;
CHOI, WY ;
BAHNEMANN, DW .
CHEMICAL REVIEWS, 1995, 95 (01) :69-96
[8]  
*ICDD, 1996, REF PATT DAT
[9]   PHOTOCATALYSIS ON TIO2 SURFACES - PRINCIPLES, MECHANISMS, AND SELECTED RESULTS [J].
LINSEBIGLER, AL ;
LU, GQ ;
YATES, JT .
CHEMICAL REVIEWS, 1995, 95 (03) :735-758
[10]   Photocatalytic activity in the 2,4-dinitroaniline decomposition over TiO2 sol-gel derived catalysts [J].
Lopez, T ;
Gomez, R ;
Sanchez, E ;
Tzompantzi, F ;
Vera, L .
JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2001, 22 (1-2) :99-107