Hydrogen Evolution and Absorption in an API X100 Line Pipe Steel Exposed to Near-Neutral pH Solutions

被引:21
作者
Ha, Hung M. [1 ]
Gadala, Ibrahim M. [1 ]
Alfantazi, Akram [1 ,2 ]
机构
[1] Univ British Columbia, Dept Mat Engn, Corros Grp, Vancouver, BC V5Z 1M9, Canada
[2] Petr Inst, Dept Chem Engn, Abu Dhabi, U Arab Emirates
关键词
stress corrosion cracking; line pipe steel; hydrogen embrittlement; hydrogen evolution; hydrogen permeation; STRESS-CORROSION CRACKING; CARBON-DIOXIDE CORROSION; C-MN STEEL; ELECTROCHEMICAL POLARIZATION; CO2-HCO3--CO32-SOLUTIONS; DISSOCIATION-CONSTANTS; CALCAREOUS DEPOSITS; STRAIN-RATE; MILD-STEEL; BEHAVIOR;
D O I
10.1016/j.electacta.2016.03.167
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Hydrogen evolution kinetics and hydrogen absorption in an API X100 line pipe steel exposed to near-neutral pH solutions is studied in this work. At the corrosion potential, dissolved CO2 in the solution accelerates the hydrogen evolution kinetics through the carbonic acid discharge reaction. At potentials more negative than the corrosion potential, hydrogen evolution due to bicarbonate discharge dominates the other cathodic reactions occurring at the ocp. The hydrogen diffusivity in the API X100 steel is found to be approximately 4.4 x 10 x (7) cm(2)/s. A measurable amount of diffusible hydrogen of approximately 1 appm is detected in the steel at the freely corroding condition using an electrochemical hydrogen permeation technique. Higher concentration of diffusible hydrogen is observed at more negative applied potentials as well as at higher CO2 partial pressures. The results in this paper support the attribution of stress corrosion cracking of pipelines in near-neutral pH trapped water environments to hydrogen embrittlement. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:18 / 30
页数:13
相关论文
共 74 条
[1]  
Anderko A.M., 1999, CORROSION 99 25 30 A
[2]  
[Anonymous], 1956, J AM WATER WORKS ASS
[3]  
[Anonymous], MAT SCI FORUM
[4]  
[Anonymous], 2014, CRC Handbook of Chemistry and Physics, V95th, P3, DOI [10.1201/b17118, DOI 10.1201/B17118]
[5]   Effect of bainitic microstructure on the susceptibility of pipeline steels to hydrogen induced cracking [J].
Arafin, M. A. ;
Szpunar, J. A. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2011, 528 (15) :4927-4940
[6]  
ASTM, 1997, ASTM G148 97 STAND P
[7]   ELECTROCHEMICAL REDUCTION OF CARBON-DIOXIDE ON VARIOUS METAL-ELECTRODES IN LOW-TEMPERATURE AQUEOUS KHCO3 MEDIA [J].
AZUMA, M ;
HASHIMOTO, K ;
HIRAMOTO, M ;
WATANABE, M ;
SAKATA, T .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1990, 137 (06) :1772-1778
[8]   2013 Frank Newman Speller Award Lecture: Integrity Management of Natural Gas and Petroleum Pipelines Subject to Stress Corrosion Cracking [J].
Beavers, John A. .
CORROSION, 2014, 70 (01) :3-18
[9]   ELECTROCHEMICAL METHODS FOR STUDYING DIFFUSION, PERMEATION AND SOLUBILITY OF HYDROGEN IN METALS [J].
BOES, N ;
ZUCHNER, H .
JOURNAL OF THE LESS-COMMON METALS, 1976, 49 (1-2) :223-240
[10]   Hydrogen embrittlement behavior of HSLA line pipe steel under cathodic protection [J].
Cabrini, Marina ;
Lorenzi, Sergio ;
Marcassoli, Paolo ;
Pastore, Tommaso .
CORROSION REVIEWS, 2011, 29 (5-6) :261-274