Localized waves of the coupled cubic-quintic nonlinear Schrodinger equations in nonlinear optics

被引:21
|
作者
Xu, Tao [1 ,3 ]
Chen, Yong [1 ,2 ,3 ]
Lin, Ji [2 ]
机构
[1] East China Normal Univ, Shanghai Key Lab Trustworthy Comp, Shanghai 200062, Peoples R China
[2] Zhejiang Normal Univ, Dept Phys, Jinhua 321004, Peoples R China
[3] East China Normal Univ, MOE Int Joint Lab Trustworthy Software, Shanghai 200062, Peoples R China
基金
中国国家自然科学基金;
关键词
generalized Darboux transformation; localized waves; soliton; rogue wave; breather; coupled cubic-quintic nonlinear Schrodinger equations; DARBOUX TRANSFORMATION; SOLITON-SOLUTIONS; ROGUE WAVES; INSTABILITY; PLASMA;
D O I
10.1088/1674-1056/26/12/120201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate some novel localized waves on the plane wave background in the coupled cubic-quintic nonlinear Schrodinger (CCQNLS) equations through the generalized Darboux transformation (DT). A special vector solution of the Lax pair of the CCQNLS system is elaborately constructed, based on the vector solution, various types of higher-order localized wave solutions of the CCQNLS system are constructed via the generalized DT. These abundant and novel localized waves constructed in the CCQNLS system include higher-order rogue waves, higher-order rogues interacting with multi-soliton or multi-breather separately. The first-and second-order semi-rational localized waves including several free parameters are mainly discussed: (i) the semi-rational solutions degenerate to the first-and second-order vector rogue wave solutions; (ii) hybrid solutions between a first-order rogue wave and a dark or bright soliton, a second-order rogue wave and two dark or bright solitons; (iii) hybrid solutions between a first-order rogue wave and a breather, a second-order rogue wave and two breathers. Some interesting and appealing dynamic properties of these types of localized waves are demonstrated, for example, these nonlinear waves merge with each other markedly by increasing the absolute value of a. These results further uncover some striking dynamic structures in the CCQNLS system.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Conservation laws and solitons for the coupled cubic-quintic nonlinear Schrodinger equations in nonlinear optics
    Shan, Wen-Rui
    Qi, Feng-Hua
    Guo, Rui
    Xue, Yu-Shan
    Wang, Pan
    Tian, Bo
    PHYSICA SCRIPTA, 2012, 85 (01)
  • [2] Rogue wave solutions for the coupled cubic-quintic nonlinear Schrodinger equations in nonlinear optics
    Zhang, Yan
    Nie, Xian-Jia
    Zhaqilao
    PHYSICS LETTERS A, 2014, 378 (03) : 191 - 197
  • [3] Darboux transformation and soliton solutions for the coupled cubic-quintic nonlinear Schrodinger equations in nonlinear optics
    Qi, Feng-Hua
    Tian, Bo
    Lu, Xing
    Guo, Rui
    Xue, Yu-Shan
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (06) : 2372 - 2381
  • [4] Localized waves of the coupled cubic–quintic nonlinear Schrdinger equations in nonlinear optics
    徐涛
    陈勇
    林机
    Chinese Physics B, 2017, 26 (12) : 84 - 97
  • [5] Dynamics of localized electromagnetic waves for a cubic-quintic nonlinear Schrodinger equation
    Douvagai
    Salathiel, Yakada
    Betchewe, Gambo
    Doka, Serge Yamigno
    Crepin, Kofane Timoleon
    EUROPEAN PHYSICAL JOURNAL PLUS, 2015, 130 (03):
  • [6] Conservation laws and Darboux transformation for the coupled cubic-quintic nonlinear Schrodinger equations with variable coefficients in nonlinear optics
    Qi, Feng-Hua
    Ju, Hong-Mei
    Meng, Xiang-Hua
    Li, Juan
    NONLINEAR DYNAMICS, 2014, 77 (04) : 1331 - 1337
  • [7] Dark-bright soliton interactions for the coupled cubic-quintic nonlinear Schrodinger equations in fiber optics
    Sun, Wen-Rong
    Tian, Bo
    Zhong, Hui
    Zhen, Hui-Ling
    LASER PHYSICS, 2014, 24 (08)
  • [8] Solitons for the cubic-quintic nonlinear Schrodinger equation with Raman effect in nonlinear optics
    Wang, Ping
    Shang, Tao
    Feng, Li
    Du, Yingjie
    OPTICAL AND QUANTUM ELECTRONICS, 2014, 46 (09) : 1117 - 1126
  • [9] Periodic and solitary waves of the cubic-quintic nonlinear Schrodinger equation
    Hong, L
    Beech, R
    Osman, F
    He, XT
    Lou, SY
    Hora, H
    JOURNAL OF PLASMA PHYSICS, 2004, 70 : 415 - 429
  • [10] On some canonical classes of cubic-quintic nonlinear Schrodinger equations
    Ozemir, C.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 446 (02) : 1814 - 1832