Authorship Identification using Recurrent Neural Networks

被引:19
作者
Gupta, Shriya T. P. [1 ]
Sahoo, Jajati Keshari [2 ]
Roul, Rajendra Kumar [3 ]
机构
[1] BITS Pilani, Dept Comp Sci, Goa Campus, Sancoale, Goa, India
[2] BITS Pilani, Dept Math, Goa Campus, Sancoale, Goa, India
[3] Thapar Inst Technol, Dept Comp Sci, Patiala, Punjab, India
来源
PROCEEDINGS OF 3RD INTERNATIONAL CONFERENCE ON INFORMATION SYSTEM AND DATA MINING (ICISDM 2019) | 2019年
关键词
Data Mining; Embeddings; Neural Networks; Text Classification;
D O I
10.1145/3325917.3325935
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Authorship identification is the process of revealing the hidden identity of authors from a corpus of literary data based on a stylometric analysis of the text. It has essential applications in various fields, such as cyber-forensics, plagiarism detection, and political socialization. This paper aims to use a deep learning approach for the task of authorship identification by defining a suitable characterization of texts to capture the distinctive style of an author. The proposed model uses an index based word embedding for the C50 and the BBC datasets, applied to the input data of article level Long Short Term Memory (LSTM) network and Gated Recurrent Unit (GRU) network models. A comparative study of this new variant of embeddings is done with the standard approach of pre-trained word embeddings.
引用
收藏
页码:133 / 137
页数:5
相关论文
共 15 条
[1]  
Ding Steven H. H., 2017, IEEE T CYBERNETICS
[2]   FINDING STRUCTURE IN TIME [J].
ELMAN, JL .
COGNITIVE SCIENCE, 1990, 14 (02) :179-211
[3]  
Greene D., 2006, P 23 INT C MACHINE L, P377, DOI [10.1145/1143844.1143892, DOI 10.1145/1143844.1143892, 10 . 1145 / 1143844 . 1143892]
[4]   Reducing the dimensionality of data with neural networks [J].
Hinton, G. E. ;
Salakhutdinov, R. R. .
SCIENCE, 2006, 313 (5786) :504-507
[5]  
Kim Y., 2014, ARXIV14085882, P1, DOI [10.3115/v1/D14-1181, DOI 10.3115/V1/D14-1181]
[6]   Deep learning [J].
LeCun, Yann ;
Bengio, Yoshua ;
Hinton, Geoffrey .
NATURE, 2015, 521 (7553) :436-444
[7]   Dependency-Based Word Embeddings [J].
Levy, Omer ;
Goldberg, Yoav .
PROCEEDINGS OF THE 52ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 2, 2014, :302-308
[8]  
Mikolov Tomas, 2013, P 2013 C N AM CHAPTE, P746, DOI DOI 10.3109/10826089109058901
[9]  
Mohsen AM, 2016, 2016 15TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2016), P898, DOI [10.1109/ICMLA.2016.45, 10.1109/ICMLA.2016.0161]
[10]  
Pennington J., 2014, P 2014 C EMP METH NA, P1532