Enhancing bending fatigue resistance of the CoCrFeMnNi high-entropy alloy thin foils by Al addition

被引:20
作者
Zou, Ji-Peng [1 ,2 ]
Luo, Xue-Mei [1 ]
Zhang, Bin [3 ]
Luo, Yan-Wen [3 ]
Chen, Hong-Lei [1 ,2 ]
Liang, Fei [1 ,2 ]
Zhang, Guang-Ping [1 ]
机构
[1] Chinese Acad Sci, Shenyang Natl Lab Mat Sci, Inst Met Res, 72 Wenhua Rd, Shenyang 110016, Peoples R China
[2] Univ Sci & Technol China, Sch Mat Sci & Engn, Shenyang 110016, Peoples R China
[3] Northeastern Univ, Key Lab Anisotropy & Texture Mat, Minist Educ, Sch Mat Sci & Engn, 3-11 Wenhua Rd, Shenyang 110819, Peoples R China
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2022年 / 831卷
基金
中国国家自然科学基金;
关键词
High-entropy alloys; Fatigue; Slip irreversibility; Deformation mechanisms; HIGH-CYCLE FATIGUE; MECHANICAL-PROPERTIES; SLIP IRREVERSIBILITY; BEHAVIOR; NICKEL; STRENGTH; MICROSTRUCTURE; INTRUSIONS; EXTRUSIONS; MULTIPOLES;
D O I
10.1016/j.msea.2021.142281
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Fatigue behaviors of the CoCrFeMnNi-based high-entropy alloy thin foils with different Al addition were investigated under dynamical bending fatigue loading. The results reveal that the Al addition can effectively decrease the cyclic strain localization and improve the fatigue resistance, which is associated with the reduced cyclic slip irreversibility. The physical reasons for such reduction can be attributed to the enhanced planar-slip ability induced by Al addition. Furthermore, the formation of BCC phases caused by 10 at.% Al addition also leads to a delay in the fatigue crack propagation.
引用
收藏
页数:11
相关论文
共 67 条
[1]   High cycle fatigue and fracture behavior of LIGA Nickel [J].
Aktaa, J ;
Reszat, JT ;
Walter, M ;
Bade, K ;
Hemker, KJ .
SCRIPTA MATERIALIA, 2005, 52 (12) :1217-1221
[2]   An investigation of fatigue in LIGA Ni MEMS thin films [J].
Allameh, SM ;
Lou, J ;
Kavishe, F ;
Buchheit, T ;
Soboyejo, WO .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 371 (1-2) :256-266
[3]   Current theoretical approaches to collective behavior of dislocations [J].
Ananthakrishna, G. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2007, 440 (4-6) :113-259
[4]   Fatigue Behavior of Electrodeposited Nanocrystalline Nickel Films [J].
Baek, Dong-Cheon ;
Lee, Soon-Bok .
11TH INTERNATIONAL CONFERENCE ON THE MECHANICAL BEHAVIOR OF MATERIALS (ICM11), 2011, 10 :3006-3011
[5]   Comparison of the low and high/very high cycle fatigue behaviors in Ni microbeams under bending [J].
Barrios, Alejandro ;
Kakandar, Ebiakpo ;
Castelluccio, Gustavo ;
Pierron, Olivier N. .
JOURNAL OF MATERIALS RESEARCH, 2021, 36 (11) :2337-2348
[6]   Fatigue of metallic microdevices and the role of fatigue-induced surface oxides [J].
Boyce, BL ;
Michael, JR ;
Kotula, PG .
ACTA MATERIALIA, 2004, 52 (06) :1609-1619
[7]   Multicomponent high-entropy Cantor alloys [J].
Cantor, B. .
PROGRESS IN MATERIALS SCIENCE, 2021, 120
[8]   Microstructural development in equiatomic multicomponent alloys [J].
Cantor, B ;
Chang, ITH ;
Knight, P ;
Vincent, AJB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :213-218
[9]   Fatigue properties and crack behavior of ultra-fine and nanocrystalline pure metals [J].
Cavaliere, P. .
INTERNATIONAL JOURNAL OF FATIGUE, 2009, 31 (10) :1476-1489
[10]   Solid solution softening in a Aloi CoCrFeMnNi high-entropy alloy [J].
Cheng, Q. ;
Xu, X. D. ;
Li, X. Q. ;
Li, Y. P. ;
Nieh, T. G. ;
Chen, M. W. .
SCRIPTA MATERIALIA, 2020, 186 :63-68