Mass-spin reparametrization for a rapid parameter estimation of inspiral gravitational-wave signals

被引:12
|
作者
Lee, Eunsub [1 ]
Morisaki, Soichiro [2 ]
Tagoshi, Hideyuki [1 ]
机构
[1] Univ Tokyo, Inst Cosm Ray Res, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778582, Japan
[2] Univ Wisconsin Milwaukee, Dept Phys, Milwaukee, WI 53201 USA
基金
新加坡国家研究基金会;
关键词
D O I
10.1103/PhysRevD.105.124057
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Estimating the source parameters of gravitational waves from compact binary coalescence (CBC) is a key analysis task in gravitational-wave astronomy. To deal with the increasing detection rate of CBC signals, optimizing the parameter estimation analysis is crucial. The analysis typically employs a stochastic sampling technique such as Markov Chain Monte Carlo (MCMC), where the source parameter space is explored and regions of high-Bayesian posterior probability density are found. One of the bottlenecks slowing down the analysis is the nontrivial correlation between masses and spins of colliding objects, which makes the exploration of mass-spin space extremely inefficient. We introduce a new set of mass-spin sampling parameters which makes the posterior distribution simpler in the new parameter space, regardless of the true values of the parameters. The new parameter combinations are obtained as the principal components of the Fisher matrix for the restricted 1.5 post-Newtonian waveform. Our reparametrization improves the efficiency of MCMC by a factor of similar to 10 for a binary neutron star with a narrow-spin prior (j chi???j < 0.05) and similar to 100 for a binary neutron star with a broad-spin prior (j chi???j < 0.99), under the assumption that the binary has spins aligned with its orbital angular momentum.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Electromagnetic counterparts of gravitational-wave signals
    Nuttall, Laura K.
    Berry, Christopher P. L.
    ASTRONOMY & GEOPHYSICS, 2021, 62 (04)
  • [32] Improving gravitational-wave parameter estimation using Gaussian process regression
    Moore, Christopher J.
    Berry, Christopher P. L.
    Chua, Alvin J. K.
    Gair, Jonathan R.
    PHYSICAL REVIEW D, 2016, 93 (06)
  • [33] Convolutional neural networks for the detection of the early inspiral of a gravitational-wave signal
    Baltus, Gregory
    Janquart, Justin
    Lopez, Melissa
    Reza, Amit
    Caudill, Sarah
    Cudell, Jean-Rene
    PHYSICAL REVIEW D, 2021, 103 (10)
  • [34] Measurable parameter combinations of environmentally-dephased EMRI gravitational-wave signals
    Rivera, Marco Immanuel B.
    Reyes, Reinabelle C.
    NEW ASTRONOMY, 2024, 112
  • [35] Nonlocal parameter degeneracy in the intrinsic space of gravitational-wave signals from extreme-mass-ratio inspirals
    Chua, Alvin J. K.
    Cutler, Curt J.
    PHYSICAL REVIEW D, 2022, 106 (12)
  • [36] Separation of the gravitational-wave signals and the solar oscillation signals
    Ni, WT
    Xu, XH
    GRAVITATIONAL WAVES, 2000, 523 : 459 - 460
  • [37] Gravitational-wave parameter estimation with gaps in LISA: A Bayesian data augmentation method
    Baghi, Quentin
    Thorpe, James Ira
    Slutsky, Jacob
    Baker, John
    Dal Canton, Tito
    Korsakova, Natalia
    Karnesis, Nikos
    PHYSICAL REVIEW D, 2019, 100 (02)
  • [38] Bayesian parameter estimation using conditional variational autoencoders for gravitational-wave astronomy
    Hunter Gabbard
    Chris Messenger
    Ik Siong Heng
    Francesco Tonolini
    Roderick Murray-Smith
    Nature Physics, 2022, 18 : 112 - 117
  • [39] Fast extreme-mass-ratio-inspiral waveforms: New tools for millihertz gravitational-wave data analysis
    Katz, Michael L.
    Chua, Alvin J. K.
    Speri, Lorenzo
    Warburton, Niels
    Hughes, Scott A.
    PHYSICAL REVIEW D, 2021, 104 (06)
  • [40] Including higher harmonics in gravitational-wave parameter estimation and cosmological implications for LISA
    Gong, Yi
    Cao, Zhoujian
    Zhao, Junjie
    Shao, Lijing
    PHYSICAL REVIEW D, 2023, 108 (06)