Mass-spin reparametrization for a rapid parameter estimation of inspiral gravitational-wave signals

被引:12
|
作者
Lee, Eunsub [1 ]
Morisaki, Soichiro [2 ]
Tagoshi, Hideyuki [1 ]
机构
[1] Univ Tokyo, Inst Cosm Ray Res, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778582, Japan
[2] Univ Wisconsin Milwaukee, Dept Phys, Milwaukee, WI 53201 USA
基金
新加坡国家研究基金会;
关键词
D O I
10.1103/PhysRevD.105.124057
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Estimating the source parameters of gravitational waves from compact binary coalescence (CBC) is a key analysis task in gravitational-wave astronomy. To deal with the increasing detection rate of CBC signals, optimizing the parameter estimation analysis is crucial. The analysis typically employs a stochastic sampling technique such as Markov Chain Monte Carlo (MCMC), where the source parameter space is explored and regions of high-Bayesian posterior probability density are found. One of the bottlenecks slowing down the analysis is the nontrivial correlation between masses and spins of colliding objects, which makes the exploration of mass-spin space extremely inefficient. We introduce a new set of mass-spin sampling parameters which makes the posterior distribution simpler in the new parameter space, regardless of the true values of the parameters. The new parameter combinations are obtained as the principal components of the Fisher matrix for the restricted 1.5 post-Newtonian waveform. Our reparametrization improves the efficiency of MCMC by a factor of similar to 10 for a binary neutron star with a narrow-spin prior (j chi???j < 0.05) and similar to 100 for a binary neutron star with a broad-spin prior (j chi???j < 0.99), under the assumption that the binary has spins aligned with its orbital angular momentum.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Multiband gravitational-wave parameter estimation: A study of future detectors
    Grimm, Stefan
    Harms, Jan
    PHYSICAL REVIEW D, 2020, 102 (02)
  • [22] Inadequacies of the Fisher information matrix in gravitational-wave parameter estimation
    Rodriguez, Carl L.
    Farr, Benjamin
    Farr, Will M.
    Mandel, Ilya
    PHYSICAL REVIEW D, 2013, 88 (08):
  • [23] Gravitational-wave astrophysics from neutron star inspiral and coalescence
    Friedman, John L.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2018, 27 (11):
  • [24] Biases in parameter estimation from overlapping gravitational-wave signals in the third-generation detector era
    Samajdar, Anuradha
    Janquart, Justin
    Van Den Broeck, Chris
    Dietrich, Tim
    PHYSICAL REVIEW D, 2021, 104 (04)
  • [25] Multidetector F-statistic metric for short-duration nonprecessing inspiral gravitational-wave signals
    Keppel, Drew
    PHYSICAL REVIEW D, 2012, 86 (12):
  • [26] Computational techniques for parameter estimation of gravitational wave signals
    Meyer, Renate
    Edwards, Matthew C.
    Maturana-Russel, Patricio
    Christensen, Nelson
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2022, 14 (01)
  • [27] Effect of calibration errors on Bayesian parameter estimation for gravitational wave signals from inspiral binary systems in the advanced detectors era
    Vitale, Salvatore
    Del Pozzo, Walter
    Li, Tjonnie G. F.
    Van Den Broeck, Chris
    Mandel, Ilya
    Aylott, Ben
    Veitch, John
    PHYSICAL REVIEW D, 2012, 85 (06):
  • [28] Rapid gravitational wave parameter estimation with a single spin: Systematic uncertainties in parameter estimation with the SpinTaylorF2 approximation
    Miller, B.
    O'Shaughnessy, R.
    Littenberg, T. B.
    Farr, B.
    PHYSICAL REVIEW D, 2015, 92 (04)
  • [29] Electromagnetic counterparts of gravitational-wave signals
    Nuttall L.K.
    Berry C.P.L.
    Astronomy and Geophysics, 2021, 62 (04): : 415 - 421
  • [30] Detecting the early inspiral of a gravitational-wave signal with convolutional neural networks
    Baltus, Gregory
    Cudell, Jean-Rene
    Janquart, Justin
    Lopez, Melissa
    Caudill, Sarah
    Reza, Amit
    2021 INTERNATIONAL CONFERENCE ON CONTENT-BASED MULTIMEDIA INDEXING (CBMI), 2021, : 147 - 152