The spectral radius of graphs with no odd wheels

被引:51
作者
Cioaba, Sebastian [1 ]
Desai, Dheer Noal [1 ]
Tait, Michael [2 ]
机构
[1] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
[2] Villanova Univ, Dept Math & Stat, Villanova, PA 19085 USA
基金
美国国家科学基金会;
关键词
EXTREMAL GRAPHS; PROOF; NUMBERS; BOUNDS;
D O I
10.1016/j.ejc.2021.103420
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The odd wheel W2k+1 is the graph formed by joining a vertex to a cycle of length 2k. In this paper, we investigate the largest value of the spectral radius of the adjacency matrix of an n-vertex graph that does not contain W2k+1. We determine the structure of the spectral extremal graphs for all k >= 2, k is not an element of{4, 5}. When k = 2, we show that these spectral extremal graphs are among the Turan-extremal graphs on n vertices that do not contain W2k+1 and have the maximum number of edges, but when k >= 9, we show that the family of spectral extremal graphs and the family of Turan-extremal graphs are disjoint. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:19
相关论文
共 36 条
[1]  
Babai L, 2009, ELECTRON J COMB, V16
[2]   On the spectral radius of graphs with cut vertices [J].
Berman, A ;
Zhang, XD .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2001, 83 (02) :233-240
[3]   Eigenvalues of subgraphs of the cube [J].
Bollobas, Bela ;
Lee, Jonathan ;
Letzter, Shoham .
EUROPEAN JOURNAL OF COMBINATORICS, 2018, 70 :125-148
[4]   ON THE SPECTRAL-RADIUS OF COMPLEMENTARY ACYCLIC MATRICES OF ZEROS AND ONES [J].
BRUALDI, RA ;
SOLHEID, ES .
SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1986, 7 (02) :265-272
[5]   A Bound on the Number of Edges in Graphs Without an Even Cycle (vol 26, pg 1, 2017) [J].
Bukh, Boris ;
Jiang, Zilin .
COMBINATORICS PROBABILITY & COMPUTING, 2017, 26 (06) :952-953
[6]   The Maximum Spectral Radius of Graphs Without Friendship Subgraphs [J].
Cioaba, Sebastian ;
Feng, Lihua ;
Tait, Michael ;
Zhang, Xiao-Dong .
ELECTRONIC JOURNAL OF COMBINATORICS, 2020, 27 (04) :1-19
[7]   Turan numbers for odd wheels [J].
Dzido, Tomasz ;
Jastrzebski, Andrzej .
DISCRETE MATHEMATICS, 2018, 341 (04) :1150-1154
[8]   The spectral radius of graphs on surfaces [J].
Ellingham, MN ;
Zha, XY .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2000, 78 (01) :45-56
[9]   EXTREMAL GRAPHS FOR INTERSECTING TRIANGLES [J].
ERDOS, P ;
FUREDI, Z ;
GOULD, RJ ;
GUNDERSON, DS .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1995, 64 (01) :89-100
[10]   Spectral radius and Hamiltonicity of graphs [J].
Fiedler, Miroslav ;
Nikiforov, Vladimir .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (09) :2170-2173