High precision machine learning-enabled ECG algorithm for predicting sites of idiopathic ventricular arrhythmia origin

被引:0
作者
Zheng, J. [1 ]
Fu, G. [2 ]
Struppa, D. [1 ]
Abudayyeh, I. [3 ]
Yacoub, M. [4 ]
El-Askary, H. [1 ]
Du, X. [2 ]
Rakovski, C. [1 ]
机构
[1] Chapman Univ, Orange, CA USA
[2] Ningbo First Hosp, Ningbo, Peoples R China
[3] Loma Linda Univ Hlth, Loma Linda, CA USA
[4] Imperial Coll London, London, England
关键词
D O I
暂无
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
引用
收藏
页码:303 / 303
页数:1
相关论文
共 50 条
  • [31] Searching for the Best Machine Learning Algorithm for the Detection of Left Ventricular Hypertrophy from the ECG: A Review
    Rabkin, Simon W.
    BIOENGINEERING-BASEL, 2024, 11 (05):
  • [32] Eccentric Activation Patterns in the Left Ventricular Outflow Tract during Idiopathic Ventricular Arrhythmias Originating From the Left Ventricular Summit A Pitfall for Predicting the Sites of Ventricular Arrhythmia Origins
    Yamada, Takumi
    Kumar, Vineet
    Yoshida, Naoki
    Doppalapudi, Harish
    CIRCULATION-ARRHYTHMIA AND ELECTROPHYSIOLOGY, 2019, 12 (08)
  • [33] Machine learning-enabled development of high performance gradient-index phononic crystals for energy focusing and harvesting
    Lee, Sangryun
    Choi, Wonjae
    Park, Jeong Won
    Kim, Dae-Su
    Nahm, Sahn
    Jeon, Wonju
    Gu, Grace X.
    Kim, Miso
    Ryu, Seunghwa
    NANO ENERGY, 2022, 103
  • [34] Catheter Ablation of Idiopathic Left Anterior Fascicular Ventricular Arrhythmias: Predicting Origin Sites via Mapping and Electrocardiography
    Zhou, Zhi-Xiang
    Hu, Wu-Ming
    Yu, Jia-Sheng
    Hong, Ze-Chao
    Yan, Yu
    Shen, Yu
    Li, Jin
    Lin, Jia-Xuan
    Chen, Yi-Fan
    D'Angelo, Lucia
    James, Shea Michaela
    Gao, Mei-ling
    Lin, Jia-Feng
    Zheng, Cheng
    JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, 2025, 36 (02) : 449 - 456
  • [35] High Precision Digitization of Paper-Based ECG Records: A Step Toward Machine Learning
    Baydoun, Mohammed
    Safatly, Lise
    Abou Hassan, Ossama K.
    Ghaziri, Hassan
    El Hajj, Ali
    Isma'eel, Hussain
    IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE, 2019, 7
  • [36] Machine Learning-Enabled Fully Automated Assessment of Left Ventricular Volume, Ejection Fraction and Strain: Experience in Pediatric and Young Adult Echocardiography
    Li, Ling
    Homer, Paul
    Craft, Mary
    Kutty, Shelby
    Putschoegl, Adam
    Marshall, Amanda
    Danford, David
    Yetman, Anji
    PEDIATRIC CARDIOLOGY, 2024, 45 (06) : 1183 - 1191
  • [37] Machine learning-enabled prediction and optimization of hardness for Nb-Ti-V-Zr refractory high entropy alloy
    Hosseini, Seyedmehrab
    Vaghefi, Ehsan
    Lee, Chanho
    Prorok, Bart
    Mirkoohi, Elham
    MATERIALS TODAY COMMUNICATIONS, 2024, 40
  • [38] High-precision machine learning for predicting latent heat in diverse multicomponent molten salts
    Wang, Xue-meng
    Tao, Yi-dan
    Dong, Guan-chen
    Wang, Shuai-yu
    Miao, Qi
    Ding, Hong-liang
    Lv, Jing
    Wu, Qiong
    Jin, Yi
    Tan, Ling-hua
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2025, 281
  • [39] Sub-surface thermal measurement in additive manufacturing via machine learning-enabled high-resolution fiber optic sensing
    Wang, Rongxuan
    Wang, Ruixuan
    Dou, Chaoran
    Yang, Shuo
    Gnanasambandam, Raghav
    Wang, Anbo
    Kong, Zhenyu
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [40] High-throughput, nondestructive assessment of defects in patterned epitaxial films on silicon by machine learning-enabled broadband plasma optical measurements
    Matham, Shravan
    Durfee, Curtis
    Mendoza, Brock
    Sadana, Devendra K.
    Bedell, Stephen W.
    Gaudiello, John
    Teehan, Sean
    Choi, HeungSoo
    Jain, Ankit
    Plihal, Martin
    2019 30TH ANNUAL SEMI ADVANCED SEMICONDUCTOR MANUFACTURING CONFERENCE (ASMC), 2019,