Method of Electric Energy Alternative Potential Analysis Based on Particle Swarm Optimization Support Vector Machine

被引:0
作者
Lian, Guohai [1 ]
Liu, Xiaoxiao [2 ]
Luo, Zhikun [2 ]
Shan, Zhouping [2 ]
Chen, Hong [2 ]
机构
[1] State Grid Hunan Elect Power Co, Changsha, Hunan, Peoples R China
[2] State Network Hunan Energy Serv Ltd, Changsha, Hunan, Peoples R China
来源
2017 INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS, ELECTRONICS AND CONTROL (ICCSEC) | 2017年
关键词
electric energy alternative; support vector machine; particle swarm optimization; potential analysis; GENERATION; SYSTEMS; SVM;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
" Electric energy alternative " strategy promotes electric energy consumption instead of scattered coal and oil burning in energy end-use link to ultimately achieve fundamental change of energy development. In order to provide theoretical guidance for power supply, power grid and capacity planning, an analysis method of potential of China's electric energy alternative based on support vector machine and particle swarm optimization algorithm is proposed. Main factors affecting process of electric energy alternative are defined based on multi dimension data, fitted with cumulative electric energy alternative using support vector machine method. Parameter selection of support vector machine is optimized with particle swarm method, and effective prediction of cumulative electric energy alternative is realized. Simulation results show that this method can significantly improve prediction accuracy, having guiding significance for supporting potential analysis of electric energy alternative.
引用
收藏
页码:400 / 404
页数:5
相关论文
共 16 条
  • [1] A review on applications of ANN and SVM for building electrical energy consumption forecasting
    Ahmad, A. S.
    Hassan, M. Y.
    Abdullah, M. P.
    Rahman, H. A.
    Hussin, F.
    Abdullah, H.
    Saidur, R.
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2014, 33 : 102 - 109
  • [2] Support vector machine regression (LS-SVM)-an alternative to artificial neural networks (ANNs) for the analysis of quantum chemistry data?
    Balabin, Roman M.
    Lomakina, Ekaterina I.
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (24) : 11710 - 11718
  • [3] Support vector machine regression (SVR/LS-SVM)-an alternative to neural networks (ANN) for analytical chemistry? Comparison of nonlinear methods on near infrared (NIR) spectroscopy data
    Balabin, Roman M.
    Lomakina, Ekaterina I.
    [J]. ANALYST, 2011, 136 (08) : 1703 - 1712
  • [4] The Future Renewable Electric Energy Delivery and Management (FREEDM) System: The Energy Internet
    Huang, Alex Q.
    Crow, Mariesa L.
    Heydt, Gerald Thomas
    Zheng, Jim P.
    Dale, Steiner J.
    [J]. PROCEEDINGS OF THE IEEE, 2011, 99 (01) : 133 - 148
  • [5] Li Gang, 2014, MATH PROBLEMS ENG
  • [6] Power-electronic systems for the grid integration of renewable energy sources:: A survey
    Manuel Carrasco, Juan
    Franquelo, Leopoldo G.
    Bialasiewicz, Jan T.
    Galvan, Eduardo
    Portillo, Ramon
    Martin Prats, Maria
    Ignacio Leon, Jose
    Moreno-Alfonso, Narciso
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2006, 53 (04) : 1002 - 1016
  • [7] Vibration-to-electric energy conversion
    Meninger, S
    Mur-Miranda, JO
    Amirtharajah, R
    Chandrakasan, AP
    Lang, JH
    [J]. IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2001, 9 (01) : 64 - 76
  • [8] Support Vector Machine (SVM) as Alternative Tool to Assign Acute Aquatic Toxicity Warning Labels to Chemicals
    Michielan, Lisa
    Pireddu, Luca
    Floris, Matteo
    Moro, Stefano
    [J]. MOLECULAR INFORMATICS, 2010, 29 (1-2) : 51 - 64
  • [9] Predictive Current Control of a SVM-PWM Power Converter Used in Wind Turbine Applications
    Morales-Caporal, Roberto
    Morales-Caporal, Marco A.
    Ordonez-Flores, Rafael
    [J]. 2010 IEEE ELECTRONICS, ROBOTICS AND AUTOMOTIVE MECHANICS CONFERENCE (CERMA 2010), 2010, : 619 - 623
  • [10] A Review of Hybrid Renewable/Alternative Energy Systems for Electric Power Generation: Configurations, Control, and Applications
    Nehrir, M. H.
    Wang, C.
    Strunz, K.
    Aki, H.
    Ramakumar, R.
    Bing, J.
    Miao, Z.
    Salameh, Z.
    [J]. IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2011, 2 (04) : 392 - 403