Minimal and maximal operator spaces and operator systems in entanglement theory

被引:23
作者
Johnston, Nathaniel [1 ]
Kribs, David W. [1 ,2 ]
Paulsen, Vern I. [3 ]
Pereira, Rajesh [1 ]
机构
[1] Univ Guelph, Dept Math & Stat, Guelph, ON N1G 2W1, Canada
[2] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[3] Univ Houston, Dept Math, Houston, TX 77204 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
Operator space; Operator system; Quantum information theory; Entanglement; BOUNDED MAPS; BREAKING CHANNELS; SCHMIDT NUMBER; SEPARABILITY; STATES;
D O I
10.1016/j.jfa.2010.10.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We examine k-minimal and k-maximal operator spaces and operator systems, and investigate their relationships with the separability problem in quantum information theory. We show that the matrix norms that define the k-minimal operator spaces are equal to a family of norms that have been studied independently as a tool for detecting k-positive linear maps and bound entanglement. Similarly, we investigate the k-super minimal and k-super maximal operator systems that were recently introduced and show that their cones of positive elements are exactly the cones of k-block positive operators and (unnormalized) states with Schmidt number no greater than k, respectively. We characterize a class of norms on the k-super minimal operator systems and show that the completely bounded versions of these norms provide a criterion for testing the Schmidt number of a quantum state that generalizes the recently-developed separability criterion based on trace-contractive maps. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:2407 / 2423
页数:17
相关论文
共 26 条
[1]  
Bengtsson I., 2017, GEOMETRY QUANTUM STA, DOI DOI 10.1017/9781139207010
[2]   On partially entanglement breaking channels [J].
Chruscinski, D ;
Kossakowski, A .
OPEN SYSTEMS & INFORMATION DYNAMICS, 2006, 13 (01) :17-26
[3]   Spectral Conditions for Positive Maps [J].
Chruscinski, Dariusz ;
Kossakowski, Andrzej .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 290 (03) :1051-1064
[4]  
Chrusciriski D., 2009, ARXIV09081846V1QUANT
[5]   Evidence for bound entangled states with negative partial transpose [J].
DiVincenzo, DP ;
Shor, PW ;
Smolin, JA ;
Terhal, BM ;
Thapliyal, AV .
PHYSICAL REVIEW A, 2000, 61 (06) :13
[6]   Restricted numerical range: A versatile tool in the theory of quantum information [J].
Gawron, Piotr ;
Puchala, Zbigniew ;
Miszczak, Jaroslaw Adam ;
Skowronek, Lukasz ;
Zyczkowski, Karol .
JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (10)
[7]   Separability of mixed quantum states: Linear contractions and permutation criteria [J].
Horodecki, M ;
Horodecki, P ;
Horodecki, R .
OPEN SYSTEMS & INFORMATION DYNAMICS, 2006, 13 (01) :103-111
[8]   Entanglement breaking channels [J].
Horodecki, M .
REVIEWS IN MATHEMATICAL PHYSICS, 2003, 15 (06) :629-641
[9]   Separability of mixed states: Necessary and sufficient conditions [J].
Horodecki, M ;
Horodecki, P ;
Horodecki, R .
PHYSICS LETTERS A, 1996, 223 (1-2) :1-8
[10]   Quantum entanglement [J].
Horodecki, Ryszard ;
Horodecki, Pawel ;
Horodecki, Michal ;
Horodecki, Karol .
REVIEWS OF MODERN PHYSICS, 2009, 81 (02) :865-942