Effects, tolerance mechanisms and management of salt stress in grain legumes

被引:163
|
作者
Farooq, Muhammad [1 ,2 ,3 ,4 ]
Gogoi, Nirmali [5 ]
Hussain, Mubshar [6 ]
Barthakur, Sharmistha [7 ]
Paul, Sreyashi [5 ]
Bharadwaj, Nandita [5 ]
Migdadi, Hussein M. [4 ]
Alghamdi, Salem S. [4 ]
Siddique, Kadambot H. M. [2 ,3 ]
机构
[1] Univ Agr Faisalabad, Dept Agron, Faisalabad 38040, Pakistan
[2] Univ Western Australia, UWA Inst Agr, Perth, WA 6001, Australia
[3] Univ Western Australia, Sch Agr & Environm, Perth, WA 6001, Australia
[4] King Saud Univ, Coll Food & Agr Sci, Riyadh 11451, Saudi Arabia
[5] Tezpur Univ, Dept Environm Sci, Tezpur 784028, Assam, India
[6] Bahauddin Zakariya Univ Multan, Dept Agron, Multan, Pakistan
[7] Natl Res Ctr Plant Biotechnol, Pusa Campus, New Delhi 110012, India
关键词
Arbuscular mycorrhizal fungi; Salt stress; Grain legumes; Grain yield; Tolerance; VIGNA-RADIATA L; CHICKPEA CICER-ARIETINUM; VICIA-FABA L; GROWTH-PROMOTING RHIZOBACTERIA; BEAN PHASEOLUS-VULGARIS; TRANSIENT APOPLASTIC ALKALINIZATIONS; ARBUSCULAR MYCORRHIZAL FUNGI; PLANT-WATER RELATIONS; MEMBRANE H+-ATPASE; PISUM-SATIVUM-L;
D O I
10.1016/j.plaphy.2017.06.020
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Salt stress is an ever-present threat to crop yields, especially in countries with irrigated agriculture. Efforts to improve salt tolerance in crop plants are vital for sustainable crop production on marginal lands to ensure future food supplies. Grain legumes are a fascinating group of plants due to their high grain protein contents and ability to fix biological nitrogen. However, the accumulation of excessive salts in soil and the use of saline groundwater are threatening legume production worldwide. Salt stress disturbs photosynthesis and hormonal regulation and causes nutritional imbalance, specific ion toxicity and osmotic effects in legumes to reduce grain yield and quality. Understanding the responses of grain legumes to salt stress and the associated tolerance mechanisms, as well as assessing management options, may help in the development of strategies to improve the performance of grain legumes under salt stress. In this manuscript, we discuss the effects, tolerance mechanisms and management of salt stress in grain legumes. The principal inferences of the review are: (i) salt stress reduces seed germination (by up to more than 50%) either by inhibiting water uptake and/or the toxic effect of ions in the embryo, (ii) salt stress reduces growth (by more than 70%), mineral uptake, and yield (by 12-100%) due to ion toxicity and reduced photosynthesis, (iii) apoplastic acidification is a good indicator of salt stress tolerance, (iv) tolerance to salt stress in grain legumes may develop through excretion and/or compartmentalization of toxic ions, increased antioxidant capacity, accumulation of compatible osmolytes, and/or hormonal regulation, (v) seed priming and nutrient management may improve salt tolerance in grain legumes, (vi) plant growth promoting rhizobacteria and arbuscular mycorrhizal fungi may help to improve salt tolerance due to better plant nutrient availability, and (vii) the integration of screening, innovative breeding, and the development of transgenics and crop management strategies may enhance salt tolerance and yield in grain legumes on salt -affected soils. (C) 2017 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:199 / 217
页数:19
相关论文
共 50 条
  • [1] Grain Legumes and Fear of Salt Stress: Focus on Mechanisms and Management Strategies
    Nadeem, Muhammad
    Li, Jiajia
    Yahya, Muhammad
    Wang, Minghua
    Ali, Asif
    Cheng, Andong
    Wang, Xiaobo
    Ma, Chuanxi
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (04)
  • [2] Drought Stress in Grain Legumes: Effects, Tolerance Mechanisms and Management
    Khatun, Marium
    Sarkar, Sumi
    Era, Farzana Mustafa
    Islam, A. K. M. Mominul
    Anwar, Md. Parvez
    Fahad, Shah
    Datta, Rahul
    Islam, A. K. M. Aminul
    AGRONOMY-BASEL, 2021, 11 (12):
  • [3] Salt Stress in Wheat: Effects, Tolerance Mechanisms, and Management
    Farooq, Muhammad
    Zahra, Noreen
    Ullah, Aman
    Nadeem, Faisal
    Rehman, Abdul
    Kapoor, Riti
    Al-Hinani, Mawra S.
    Siddique, Kadambot H. M.
    JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION, 2024, 24 (04) : 8151 - 8173
  • [4] Salt Stress in Brassica: Effects, Tolerance Mechanisms, and Management
    Shahzad, Babar
    Rehman, Abdul
    Tanveer, Mohsin
    Wang, Lei
    Park, Sang Koo
    Ali, Amjed
    JOURNAL OF PLANT GROWTH REGULATION, 2022, 41 (02) : 781 - 795
  • [5] Effects, tolerance mechanisms and management of salt stress in lucerne (Medicago sativa)
    Al-Farsi, Safaa Mohammed
    Nawaz, Ahmad
    Anees-ur-Rehman
    Nadaf, Saleem K.
    Al-Sadi, Abdullah M.
    Siddique, Kadambot H. M.
    Farooq, Muhammad
    CROP & PASTURE SCIENCE, 2020, 71 (05) : 411 - 428
  • [6] Salinity stress response and "omics' approaches for improving salinity stress tolerance in major grain legumes
    Jha, Uday Chand
    Bohra, Abhishek
    Jha, Rintu
    Parida, Swarup Kumar
    PLANT CELL REPORTS, 2019, 38 (03) : 255 - 277
  • [7] Salt stress responses and alleviation strategies in legumes: a review of the current knowledge
    Bouzroud, Sarah
    Henkrar, Fatima
    Fahr, Mouna
    Smouni, Abdelaziz
    3 BIOTECH, 2023, 13 (08)
  • [8] Effects of Salt Stress on Grain Yield and Quality Parameters in Rice Cultivars with Differing Salt Tolerance
    Li, Zhikang
    Zhou, Tianyang
    Zhu, Kuanyu
    Wang, Weilu
    Zhang, Weiyang
    Zhang, Hao
    Liu, Lijun
    Zhang, Zujian
    Wang, Zhiqin
    Wang, Baoxiang
    Xu, Dayong
    Gu, Junfei
    Yang, Jianchang
    PLANTS-BASEL, 2023, 12 (18):
  • [9] Salt stress in maize: effects, resistance mechanisms, and management. A review
    Muhammad Farooq
    Mubshar Hussain
    Abdul Wakeel
    Kadambot H. M. Siddique
    Agronomy for Sustainable Development, 2015, 35 : 461 - 481
  • [10] Salt stress in maize: effects, resistance mechanisms, and management. A review
    Farooq, Muhammad
    Hussain, Mubshar
    Wakeel, Abdul
    Siddique, Kadambot H. M.
    AGRONOMY FOR SUSTAINABLE DEVELOPMENT, 2015, 35 (02) : 461 - 481