New Bounds on the Double Total Domination Number of Graphs

被引:6
|
作者
Cabrera-Martinez, A. [1 ]
Hernandez-Mira, F. A. [2 ]
机构
[1] Univ Rovira & Virgili, Dept Engn Informat & Matemat, Av Paisos Catalans 26, Tarragona 43007, Spain
[2] Univ Autonoma Guerrero, Ctr Ciencias Desarrollo Reg, Pinos S-N, Acapulco 39640, Guerrero, Mexico
关键词
Double total domination; Double domination; Total domination; 2-domination; Independence number; TUPLE TOTAL DOMINATION; TOTAL K-DOMINATION; PARAMETERS;
D O I
10.1007/s40840-021-01200-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph of minimum degree at least two. A set D subset of V(G) is said to be a double total dominating set of G if vertical bar N(v) boolean AND D vertical bar >= 2 for every vertex v epsilon V(G). The minimum cardinality among all double total dominating sets of G is the double total domination number of G. In this article, we continue with the study of this parameter. In particular, we provide new bounds on the double total domination number in terms of other domination parameters. Some of our results are tight bounds that improve some well-known results.
引用
收藏
页码:443 / 453
页数:11
相关论文
共 50 条
  • [1] New Bounds on the Double Total Domination Number of Graphs
    A. Cabrera-Martínez
    F. A. Hernández-Mira
    Bulletin of the Malaysian Mathematical Sciences Society, 2022, 45 : 443 - 453
  • [2] Double total domination number in certain chemical graphs
    Barisic, Ana Klobucar
    Klobucar, Antoaneta
    AIMS MATHEMATICS, 2022, 7 (11): : 19629 - 19640
  • [3] Double total domination in the generalized lexicographic product of graphs
    Cabrera-Martinez, Abel
    Villamar, Ismael Rios
    Rueda-Vazquez, Juan M.
    Sigarreta Almira, Jose M.
    QUAESTIONES MATHEMATICAE, 2024, 47 (03) : 689 - 703
  • [4] Relating the total {2}-domination number with the total domination number of graphs
    Villamar, I. Rios
    Cabrera-Martinez, A.
    Sanchez, J. L.
    Sigarreta, J. M.
    DISCRETE APPLIED MATHEMATICS, 2023, 333 : 90 - 95
  • [5] Double total domination number of Cartesian product of paths
    Li, Linyu
    Yue, Jun
    Zhang, Xia
    AIMS MATHEMATICS, 2023, 8 (04): : 9506 - 9519
  • [6] Bounds on neighborhood total domination in graphs
    Henning, Michael A.
    Rad, Nader Jafari
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (16-17) : 2460 - 2466
  • [7] Bounds on Global Total Domination in Graphs
    Rad, Nader Jafari
    Sharifi, Elahe
    COMPUTER SCIENCE JOURNAL OF MOLDOVA, 2015, 23 (01) : 3 - 10
  • [8] Upper Bounds on the Total Domination Number
    Haynes, Teresa W.
    Henning, Michael A.
    ARS COMBINATORIA, 2009, 91 : 243 - 256
  • [9] Bounds of the 2-domination number of graphs
    Blidia, Mostafa
    Chellali, Mustapha
    Volkmann, Lutz
    UTILITAS MATHEMATICA, 2006, 71 : 209 - 216
  • [10] On the Secure Total Domination Number of Graphs
    Cabrera Martinez, Abel
    Montejano, Luis P.
    Rodriguez-Velazquez, Juan A.
    SYMMETRY-BASEL, 2019, 11 (09):