Self-Recovering Extended Kalman Filter for Frequency Tracking

被引:0
作者
Pak, Jung Min [1 ]
Ahn, Choon Ki [1 ]
Lim, Myo Taeg [1 ]
机构
[1] Korea Univ, Sch Elect Engn, 145 Anam Ro, Seoul, South Korea
来源
2015 15TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS) | 2015年
关键词
Self-recovering extended Kalman filter (SREKF); extended Kalman filter (EKF); finite impulse response (FIR) filter; frequency tracking;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a new nonlinear filtering algorithm called the self-recovering extended Kalman filter ( SREKF). In the SREKF algorithm, the EKF's failure or abnormal operation is automatically diagnosed. When the failure is diagnosed, an assisting filter, a nonlinear finite impulse response ( FIR) filter, is operated. Using the output of the nonlinear FIR filter, the EKF is reset and rebooted. In this way, the SREKF can self-recover from failures. The SREKF is applied to a frequency tracking problem for demonstration of its effectiveness.
引用
收藏
页码:389 / 392
页数:4
相关论文
共 50 条
[41]   Stochastic Stability Condition for the Extended Kalman Filter With Intermittent Observations [J].
Liu, Xiangdong ;
Li, Luyu ;
Li, Zhen ;
Fernando, Tyrone ;
Iu, Herbert H. C. .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2017, 64 (03) :334-338
[42]   Navigation of Autonomous Underwater Vehicle Using Extended Kalman Filter [J].
Ranjan, T. N. ;
Nherakkol, Arun ;
Navelkar, Gajanan .
TRENDS IN INTELLIGENT ROBOTICS, 2010, 103 :1-+
[43]   Sensorless control method of PMSM based on extended Kalman filter [J].
Shang, Zhe ;
Zhao, Rongxiang ;
Wu, Jing .
WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, :8093-+
[44]   Sensorless PMSM drives using Extended Kalman Filter (EKF) [J].
Termizi, Mohamad Syakir ;
Lazi, Jurifa Mat ;
Ibrahim, Zulkifilie ;
Talib, Md Hairul Nizam ;
Aziz, M. J. A. ;
Ayob, S. M. .
2017 3RD IEEE CONFERENCE ON ENERGY CONVERSION (CENCON), 2017, :145-150
[45]   Respiratory Motion Estimation With Hybrid Implementation of Extended Kalman Filter [J].
Lee, Suk Jin ;
Motai, Yuichi ;
Murphy, Martin .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2012, 59 (11) :4421-4432
[46]   Sensorless Control of an IPM Synchronous Motor with Extended Kalman Filter [J].
Kim, Jae-Hoon ;
Lee, Sang-soo ;
Hyun, Dong-Seok .
2012 IEEE VEHICLE POWER AND PROPULSION CONFERENCE (VPPC), 2012, :13-18
[47]   Quadratic extended Kalman filter approach for GPS/INS integration [J].
Wang, Wei ;
Liu, Zong-yu ;
Xie, Rong-rong .
AEROSPACE SCIENCE AND TECHNOLOGY, 2006, 10 (08) :709-713
[48]   DIAGNOSTIC OF A FLOW PROCESS THROUGH EXTENDED KALMAN FILTER APPLICATION [J].
Braghin, F. ;
Cinquemani, S. ;
Moschini, S. ;
Prato, L. ;
Zanzi, R. .
3RD INTERNATIONAL CONFERENCE OF EDUCATION, RESEARCH AND INNOVATION (ICERI2010), 2010, :1228-1237
[49]   State-of-Charge Estimation Using a Self-adaptive Noise Extended Kalman Filter For Lithium Batteries [J].
Yang, Daiming ;
Liu, Jianzheng ;
Wang, Yi ;
Chen, Man ;
Zhang, Baihua ;
Li, Yongqi .
2014 IEEE PES ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (IEEE PES APPEEC), 2014,
[50]   Multirate Strong Tracking Extended Kalman Filter and Its Implementation on Lithium Iron Phosphate (LiFePO4) Battery System [J].
Jia, J. ;
Lin, P. ;
Chin, C. S. ;
Toh, W. D. ;
Gao, Z. ;
Lyu, H. ;
Cham, Y. T. ;
Mesbahi, E. .
2015 IEEE 11TH INTERNATIONAL CONFERENCE ON POWER ELECTRONICS AND DRIVE SYSTEMS (PEDS 2015), 2015, :640-645