Switching scheme, equivalence, and analog validation of the alternative fractional variable-order derivative definition

被引:15
作者
Sierociuk, Dominik [1 ]
Malesza, Wiktor [1 ]
Macias, Michal [1 ]
机构
[1] Warsaw Univ Technol, Inst Control & Ind Elect, Koszykowa 75, PL-00662 Warsaw, Poland
来源
2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC) | 2013年
关键词
D O I
10.1109/CDC.2013.6760481
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, an alternative definition of variable-order differ-integral is proposed, both in a difference equation and matrix form. The derivation and explanation of the identity between the alternative definition and the reductive-switching scheme of variable-order derivative is introduced. Based on the switching scheme, an analog realization of the proposed variable-order derivative definition is presented. Moreover, obtained experimental results of the analog realization are compared with the numerical results.
引用
收藏
页码:3876 / 3881
页数:6
相关论文
共 19 条
[1]  
Dzielinski A., 2011, ADV DIFFERENCE EQUAT
[2]   Time domain validation of ultracapacitor fractional order model [J].
Dzielinski, Andrzej ;
Sarwas, Grzegorz ;
Sierociuk, Dominik .
49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, :3730-3735
[3]   Variable order and distributed order fractional operators [J].
Lorenzo, CF ;
Hartley, TT .
NONLINEAR DYNAMICS, 2002, 29 (1-4) :57-98
[4]   Stability analysis of a discrete-time system with a variable-, fractional-order controller [J].
Ostalczyk, P. .
BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2010, 58 (04) :613-619
[5]   Variable-fractional-order dead-beat control of an electromagnetic servo [J].
Ostalczyk, Piotr ;
Rybicki, Tomasz .
JOURNAL OF VIBRATION AND CONTROL, 2008, 14 (9-10) :1457-1471
[6]   Identification of Parameters of a Half-Order System [J].
Petras, Ivo ;
Sierociuk, Dominik ;
Podlubny, Igor .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (10) :5561-5566
[7]  
Podlubny I, 2000, Fract. Calc. Appl. Anal, V3, P359, DOI DOI 10.1016/J.JCP.2009.01.014)
[8]   Matrix approach to discrete fractional calculus II: Partial fractional differential equations [J].
Podlubny, Igor ;
Chechkin, Aleksei ;
Skovranek, Tomas ;
Chen, YangQuan ;
Vinagre Jara, Blas M. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (08) :3137-3153
[9]   On the variable order dynamics of the nonlinear wake caused by a sedimenting particle [J].
Ramirez, Lynnette E. S. ;
Coimbra, Carlos F. M. .
PHYSICA D-NONLINEAR PHENOMENA, 2011, 240 (13) :1111-1118
[10]   A Physical experimental study of variable-order fractional integrator and differentiator [J].
Sheng, H. ;
Sun, H. G. ;
Coopmans, C. ;
Chen, Y. Q. ;
Bohannan, G. W. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2011, 193 (01) :93-104