A classification of Einstein lightlike hypersurfaces of a Lorentzian space form

被引:15
作者
Duggal, K. L. [1 ]
Jin, D. H. [2 ]
机构
[1] Univ Windsor, Dept Math, Windsor, ON N9B 3P4, Canada
[2] Dongguk Univ, Dept Math, Kyongju 780714, South Korea
基金
加拿大自然科学与工程研究理事会;
关键词
Lightlike hypersurfaces; Screen distribution; Lorentzian space forms; Einstein manifolds; CURVATURE; GEOMETRY;
D O I
10.1016/j.geomphys.2010.07.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study Einstein lightlike hypersurfaces of a semi-Riemannian manifold of constant curvature c, whose shape operator is conformal to the shape operator of its screen distribution. Our main result is a classification theorem for Einstein lightlike hypersurfaces of Lorentzian space forms. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1881 / 1889
页数:9
相关论文
共 9 条
[1]  
Antidogbe C., 2004, Int. J. Pure Appl. Math., V11, P421
[2]  
Atindogbe C., 2006, Kodai Math. J., V29, P58
[3]  
Bejancu A., 1996, Mathematics and its Applications
[4]   A report on canonical null curves and screen distributions for lightlike geometry [J].
Duggal, K. L. .
ACTA APPLICANDAE MATHEMATICAE, 2007, 95 (02) :135-149
[5]   On scalar curvature in lightlike geometry [J].
Duggal, K. L. .
JOURNAL OF GEOMETRY AND PHYSICS, 2007, 57 (02) :473-481
[6]   Warped product of lightlike manifolds [J].
Duggal, KL .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (05) :3061-3072
[7]   Hypersurfaces of a space of constant curvature [J].
Fialkow, A .
ANNALS OF MATHEMATICS, 1938, 39 :762-785
[8]  
Jin, 2007, NULL CURVES HYPERSUR
[9]   On closed spaces of constant mean curvature [J].
Thomas, TY .
AMERICAN JOURNAL OF MATHEMATICS, 1936, 58 :702-704