The X-Space Formulation of the Magnetic Particle Imaging Process: 1-D Signal, Resolution, Bandwidth, SNR, SAR, and Magnetostimulation

被引:306
作者
Goodwill, Patrick W. [1 ]
Conolly, Steven M. [1 ]
机构
[1] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA
基金
美国国家卫生研究院;
关键词
Biomedical imaging; magnetic particle imaging; signal detection; x-space; FIELD; PENETRATION;
D O I
10.1109/TMI.2010.2052284
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The magnetic particle imaging (MPI) imaging process is a new method of medical imaging with great promise. In this paper we derive the 1-D MPI signal, resolution, bandwidth requirements, signal-to-noise ratio (SNR), specific absorption rate, and slew rate limitations. We conclude with experimental data measuring the point spread function for commercially available SPIO nanoparticles and a demonstration of the principles behind 1-D imaging using a static offset field. Despite arising from the nonlinear temporal response of a magnetic nanoparticle to a changing magnetic field, the imaging process is linear in the magnetization distribution and can be described as a convolution. Reconstruction in one dimension is exact and has a well-behaved quasi-Lorentzian point spread function. The spatial resolution improves cubically with increasing diameter of the SPIO domain, inverse to absolute temperature, linearly with saturation magnetization, and inversely with gradient. The bandwidth requirements approach a megahertz for reasonable imaging parameters and millimeter scale resolutions, and the SNR increases with the scanning rate. The limit to SNR as we scale MPI to human sizes will be patient heating. SAR and magnetostimulation limits give us surprising relations between optimal scanning speeds and scanning frequency for different types of scanners.
引用
收藏
页码:1851 / 1859
页数:9
相关论文
共 24 条
[1]   Magnetization response spectroscopy of superparamagnetic nanoparticles for magnetic particle imaging [J].
Biederer, S. ;
Knopp, T. ;
Sattel, T. F. ;
Luedtke-Buzug, K. ;
Gleich, B. ;
Weizenecker, J. ;
Borgert, J. ;
Buzug, T. M. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (20)
[2]   RF MAGNETIC-FIELD PENETRATION, PHASE-SHIFT AND POWER DISSIPATION IN BIOLOGICAL TISSUE - IMPLICATIONS FOR NMR IMAGING [J].
BOTTOMLEY, PA ;
ANDREW, ER .
PHYSICS IN MEDICINE AND BIOLOGY, 1978, 23 (04) :630-643
[3]   Simple linear formulation for magnetostimulation specific to MRI gradient coils [J].
Chronik, BA ;
Rutt, BK .
MAGNETIC RESONANCE IN MEDICINE, 2001, 45 (05) :916-919
[4]   Resolution: A survey [J].
denDekker, AJ ;
vandenBos, A .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1997, 14 (03) :547-557
[5]   Optimization of nanoparticle core size for magnetic particle imaging [J].
Ferguson, R. Matthew ;
Minard, Kevin R. ;
Krishnan, Kannan M. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2009, 321 (10) :1548-1551
[6]   Tomographic imaging using the nonlinear response of magnetic particles [J].
Gleich, B ;
Weizenecker, R .
NATURE, 2005, 435 (7046) :1214-1217
[7]   Narrowband Magnetic Particle Imaging [J].
Goodwill, Patrick W. ;
Scott, Greig C. ;
Stang, Pascal P. ;
Conolly, Steven M. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (08) :1231-1237
[8]   SIGNAL-TO-NOISE RATIO OF NUCLEAR MAGNETIC-RESONANCE EXPERIMENT [J].
HOULT, DI ;
RICHARDS, RE .
JOURNAL OF MAGNETIC RESONANCE, 1976, 24 (01) :71-85
[9]   A compound interferometer for fine structure work [J].
Houston, WV .
PHYSICAL REVIEW, 1927, 29 (03) :0478-0484
[10]   MAGNETOSTIMULATION IN MRI [J].
IRNICH, W ;
SCHMITT, F .
MAGNETIC RESONANCE IN MEDICINE, 1995, 33 (05) :619-623